Воспаление в имунной системе

Воспаление в имунной системе thumbnail

Иммунная система. Воспаление

Иммунная система и процесс воспаления участвуют в защите организма от проникающих в него микроорганизмов, отвечая на повреждение. Однако неадекватная активация этих систем приводит к широкому спектру воспалительных нарушений. Воспаление характеризуется следующими признаками:

• расширением сосудов, ведущим к покраснению тканей;

• увеличением сосудистой проницаемости, ведущим к отеку тканей;

• болью;

• миграцией в ткани лейкоцитов;

• изменением функции органа или ткани.

Физиология воспалительного процесса обладает некоторыми сходными характеристиками с физиологией повреждения. Реакции, которые они опосредуют, имеют цель обеспечить ответ организма на вторжение микроорганизмов, стресс или увеличение местного кровотока в области повреждения, обеспечивая тем самым миграцию в эту область лейкоцитов и других форменных элементов крови. Реакции обеспечивают выполнение большого количества важных процессов: возникновение боли в попытке уменьшить степень повреждения, изменение местной среды для уменьшения концентрации повреждающих веществ и миграцию лейкоцитов для уничтожения микроорганизмов.

воспаление

Кроме того, многие аутакоиды, выделяемые в ответ на повреждение или инфекцию, вызывают увеличение сосудистой проницаемости, приводящее к отеку, и обеспечивают процесс регенерации и защиты ткани, который в случае неадекватности может приводить к изменению функции ткани.

Ключевой дополнительной характеристикой иммунного ответа является способность лимфоцитов распознавать чужеродные белки (антигены), которые могут быть поверхностными белками на патогенах или, у некоторых людей, совершенно безвредными белками (такими как пыльца растений или чешуйки кожи животных), вызывающими аллергические реакции. Лимфоциты образуются из стволовых клеток костного мозга, затем в тимусе развиваются Т-лимфоциты, а в костном мозге — В-лимфоциты.

Т-лимфоциты имеют на своей поверхности антигенные Т-клеточные рецепторы. Т-лимфоциты специфически распознают антигены, ассоциированные с главным комплексом гистосовместимости (HLA-антигены), на антигенпрезентирующих клетках — макрофагах и дендритных клетках. В случае активации Т-лимфоцитов посредством антигена через Т-клеточные рецепторы продуцируются растворимые белки, называемые цитокинами, которые передают сигнал Т-лимфоцитам, В-лимфоцитам, моноцитам/макрофагам и другим клеткам.

Т-лимфоциты классифицируют на два подвида:

• CD4+, которые взаимодействуют с В-лимфоцитами и помогают им осуществлять пролиферацию, дифференцировку и продукцию антител, поэтому их называют хелперными Т-лимфоцитами (Th). Th подразделяют на Th; и Th2 на основании спектра цитокинов, которые они выделяют;

• CD8+, которые уничтожают клетки, инфицированные вирусом или другими внутриклеточными патогенами, т.е. обладают цитотоксичностью, поэтому эти Т-лимфоциты называют цитотоксическими (Тс).

— Также рекомендуем «В-лимфоциты. Причины начала воспаления»

Оглавление темы «Препараты влияющие на иммунную систему»:

1. Иммунная система. Воспаление

2. В-лимфоциты. Причины начала воспаления

3. Низкомолекулярные аутокоиды. Гистамин

4. Серотонин и эйкозаноиды. Лейкотриены

5. Заболевания иммунной системы. Реакции гиперчувствительности и анафилаксия

6. Лечение анафилаксии. Аллергический ринит

7. Крапивница и ангионевротический отек. Реакции гиперчувствительности типа II, III, IV

8. Антагонисты лейкотриеновых, Н1-рецепторов. Противоаллергические препараты

9. Адреналин и глюкокортикостероиды. Системная красная волчанка

10. Циклофосфамид при СКВ. НПВС при системной красной волчанке

Источник

Как устроен иммунитет: Объясняем по пунктам

Наш организм непрерывно меняется, но при этом очень «любит» постоянство и может нормально работать только при определенных параметрах своей внутренней среды. Например, нормальная температура тела колеблется между 36 и 37 градусами по Цельсию. Вспомните последнюю простуду и то, как плохо вы себя чувствовали, стоило температуре подняться всего на полградуса. Такая же ситуация и с другими показателями: артериальным давлением, рН крови, уровнем кислорода и глюкозы в крови и другими. Постоянство значений этих параметров называется гомеостазом, а поддержкой его стабильного уровня занимаются практически все органы и системы организма: сердце и сосуды поддерживают постоянное артериальное давление, легкие — уровень кислорода в крови, печень — уровень глюкозы и так далее.

Иммунная же система отвечает за генетический гомеостаз. Она помогает поддерживать постоянство генетического состава организма. То есть ее задача — уничтожать не только все чужеродные организмы и продукты их жизнедеятельности, проникающие извне (бактерии, вирусы, грибки, токсины и прочее), но также и клетки собственного организма, если «что-то пошло не так» и, например, они превратились в злокачественную опухоль, то есть стали генетически чужеродными.

Как клетки иммунной системы уничтожают «врагов»?

Чтобы разобраться с этим, сначала нужно понять, как иммунная система устроена и какие бывают виды иммунитета.

Иммунитет бывает врожденным (он же неспецифический) и приобретенным (он же адаптивный, или специфический). Врожденный иммунитет одинаков у всех людей и идентичным образом реагирует на любых «врагов». Реакция начинается немедленно после проникновения микроба в организм и не формирует иммунологическую память. То есть, если такой же микроб проникнет в организм снова, система неспецифического иммунитета его «не узнает» и будет реагировать «как обычно». Неспецифический иммунитет очень важен — он первым сигнализирует об опасности и немедленно начинает давать отпор проникшим микробам.

Однако эти реакции не могут защитить организм от серьезных инфекций, поэтому после неспецифического иммунитета в дело вступает приобретенный иммунитет. Здесь уже реакция организма индивидуальна для каждого «врага», поэтому «арсенал» специфического иммунитета у разных людей различается и зависит от того, с какими инфекциями человек сталкивался в жизни и какие прививки делал.

Специфическому иммунитету нужно время, чтобы изучить проникшую в организм инфекцию, поэтому реакции при первом контакте с инфекцией развиваются медленнее, зато работают гораздо эффективнее. Но самое главное, что, один раз уничтожив микроба, иммунная система «запоминает» его и в следующий раз при столкновении с таким же реагирует гораздо быстрее, часто уничтожая его еще до появления первых симптомов заболевания. Именно так работают прививки: когда в организм вводят ослабленных или убитых микробов, которые уже не могут вызвать заболевание, у иммунной системы есть время изучить их и запомнить, сформировать иммунологическую память. Поэтому, когда человек после вакцинации сталкивается с реальной инфекцией, иммунная система уже полностью готова дать отпор, и заболевание не начинается вообще или протекает гораздо легче.

Кто отвечает за работу различных видов иммунитета?

  • Костный мозг. Это центральный орган иммуногенеза. В костном мозге образуются все клетки, участвующие в иммунных реакциях.
  • Тимус (вилочковая железа). В тимусе происходит дозревание некоторых иммунных клеток (Т-лимфоцитов) после того, как они образовались в костном мозге.
  • Селезенка. В селезенке также дозревают иммунные клетки (B-лимфоциты), кроме того, в ней активно происходит процесс фагоцитоза — когда специальные клетки иммунной системы ловят и переваривают проникших в организм микробов, фрагменты собственных погибших клеток и так далее.
  • Лимфатические узлы. По своему строению они напоминают губку, через которую постоянно фильтруется лимфа. В порах этой губки есть очень много иммунных клеток, которые также ловят и переваривают микробов, проникших в организм. Кроме того, в лимфатических узлах находятся клетки памяти — это специальные клетки иммунной системы, которые хранят информацию о микробах, уже проникавших в организм ранее.

Таким образом, органы иммунной системы обеспечивают образование, созревание и место для жизни иммунных клеток. В нашем организме есть много их видов, вот основные из них.

  • Т-лимфоциты. Названы так, потому что после образования в костном мозге дозревают в вилочковой железе — тимусе. Разные подвиды Т-лимфоцитов отвечают за разные функции. Например, Т-киллеры могут убивать зараженные вирусами клетки, чтобы остановить развитие инфекции, Т-хелперы помогают иммунной системе распознавать конкретные виды микробов, а Т-супрессоры регулируют силу и продолжительность иммунной реакции.
  • B-лимфоциты. Название их происходит от Bursa fabricii (сумка Фабрициуса) — особого органа у птиц, в котором впервые обнаружили эти клетки. В-лимфоциты умеют синтезировать антитела (иммуноглобулины). Это специальные белки, которые «прилипают» к микробам и вызывают их гибель. Также антитела могут нейтрализовывать некоторые токсины.
  • Натуральные киллеры. Эти клетки находят и убивают раковые клетки и клетки, пораженные вирусами.
  • Нейтрофилы и макрофаги умеют ловить и переваривать микробов — осуществлять фагоцитоз. Кроме того, макрофаги выполняют важнейшую роль в процессе презентации антигена, когда макрофаг знакомит другие клетки иммунной системы с кусочками переваренного микроба, что позволяет организму лучше бороться с инфекцией.
  • Эозинофилы защищают наш организм от паразитов — обеспечивают антигельминтный иммунитет.
  • Базофилы — выполняют главным образом сигнальную функцию, выделяя большое количество сигнальных веществ (цитокинов) и привлекая этим другие иммунные клетки в очаг воспаления.

Как клетки иммунной системы отличают «своих» от «чужих» и понимают, с кем нужно бороться?

В этом им помогает главный комплекс гистосовместимости первого типа (MHC-I). Это группа белков, которая располагается на поверхности каждой клетки нашего организма и уникальна для каждого человека. Это своего рода «паспорт» клетки, который позволяет иммунной системе понимать, что перед ней «свои». Если с клеткой организма происходит что-то нехорошее, например, она поражается вирусом или перерождается в опухолевую клетку, то конфигурация MHC-I меняется или же он исчезает вовсе. Натуральные киллеры и Т-киллеры умеют распознавать MHC-I рецептор, и как только они находят клетку с измененным или отсутствующим MHC-I, они ее убивают. Так работает клеточный иммунитет.

Но у нас есть еще один вид иммунитета — гуморальный. Основными защитниками в этом случае являются антитела — специальные белки, синтезируемые B-лимфоцитами, которые связываются с чужеродными объектами (антигенами), будь то бактерия, вирусная частица или токсин, и нейтрализуют их. Для каждого вида антигена наш организм умеет синтезировать специальные, подходящие именно для этого антигена антитела. Молекулу каждого антитела, также их называют иммуноглобулинами, можно условно разделить на две части: Fc-участок, который одинаков у всех иммуноглобулинов, и Fab-участок, который уникален для каждого вида антител. Именно с помощью Fab-участка антитело «прилипает» к антигену, поэтому строение этого участка молекулы зависит от строения антигена.

Как наша иммунная система понимает устройство антигена и подбирает подходящее для него антитело?

Рассмотрим этот процесс на примере развития бактериальной инфекции. Например, вы поцарапали палец. При повреждении кожи в рану чаще всего попадают бактерии. При повреждении любой ткани организма сразу же запускается воспалительная реакция.  Поврежденные клетки выделяют большое количество разных веществ — цитокинов, к которым очень чувствительны нейтрофилы и макрофаги. Реагируя на цитокины, они проникают через стенки капилляров, «приплывают» к месту повреждения и начинают поглощать и переваривать попавших в рану бактерий — так запускается неспецифический иммунитет, но до синтеза антител дело пока еще не дошло.

Расправляясь с бактериями, макрофаги выводят на свою поверхность разные их кусочки, чтобы познакомить Т-хелперов и B-лимфоцитов со строением этих бактерий. Этот процесс называется презентацией антигена. Т-хелпер и B-лимфоцит изучают кусочки переваренной бактерии и подбирают соответствующую структуру антитела так, чтобы потом оно хорошо «прилипало» к таким же бактериям. Так запускается специфический гуморальный иммунитет. Это довольно длительный процесс, поэтому при первом контакте с инфекцией организму может понадобиться до двух недель, чтобы подобрать структуру и начать синтезировать нужные антитела.

После этого успешно справившийся с задачей B-лимфоцит превращается в плазматическую клетку и начинает в большом количестве синтезировать антитела. Они поступают в кровь, разносятся по всему организму и связываются со всеми проникшими бактериями, вызывая их гибель. Кроме того, бактерии с прилипшими антителами гораздо быстрее поглощаются макрофагами, что также способствует уничтожению инфекции.

Есть ли еще какие-то механизмы?

Специфический иммунитет не был бы столь эффективен, если бы каждый раз при встрече с инфекцией организм в течение двух недель синтезировал необходимое антитело. Но здесь нас выручает другой механизм: часть активированных Т-хелпером В-лимфоцитов превращается в так называемые клетки памяти. Эти клетки не синтезируют антитела, но несут в себе информацию о структуре проникшей в организм бактерии. Клетки памяти мигрируют в лимфатические узлы и могут сохраняться там десятилетиями. При повторной встрече с этим же видом бактерий благодаря клеткам памяти организм намного быстрее начинает синтезировать нужные антитела и иммунный ответ запускается раньше.

Таким образом, наша иммунная система имеет целый арсенал различных клеток, органов и механизмов, чтобы отличать клетки собственного организма от генетически чужеродных объектов, уничтожая последние и выполняя свою главную функцию — поддержание генетического гомеостаза.

Источник

Иммунокомплексный вариант воспаления

Воспаление может быть ответом на образование продуктов протеолиза компонентов комплемента при активации системы комплемента при участии иммунных комплексов.

Среди таких продуктов протеолиза особое место занимают хемоаттрактанты и анафилатоксины (С3а, С4а, С5а), которые стимулируют тучные клетки и гранулоциты к дегрануляции и секреции вазоактивных медиаторов.

Анафилатоксины индуцируют секрецию медиаторов, вызывающих быстрое повышение проницаемости сосудов.

Рецепторы для С3а и С4а экспрессированы на тучных клетках, базофилах, гладко-мышечных клетках, лимфоцитах. Рецепторы для С5а экспрессированы на тучных клетках, базофилах, нейтрофилах, моноцитах/макрофагах, эндотелиальных клетках. Экспрессия С5а-рецепторов была выявлена и на эпителиальных клетках бронхов и легких, и на гладкомышечных клетках и эндотелиальных клетках сосудов легких. При связывании анафилатоксинов со специфическими для них рецепторами на базофилах и тучных клетках индуцируется экзоцитоз гранул, содержащих вазоактивные медиаторы (гистамин и др.).

Пептид С5а обладает дополнительно активностью хемоаттрактанта для гранулоцитов, которых он заставляет мигрировать строго по градиенту его концентрации. Пептид С5а стимулирует окислительный метаболизм нейтрофилов, их дегрануляцию и адгезию к эндотелию, повышая одновременно проницаемость эндотелия. Кроме того, С5а индуцирует секрецию гистамина тучными клетками (рис. 6.4).

brlg_6-4.jpg

Рисунок 6.4. Участие продуктов активации комплемента в патогенезе иммунного воспаления. Связанные с клетками антитела или иммунные комплексы могут инициировать активацию системы комплемента по классическому пути. Образующиеся при этом анафилатоксины С3а и С5а могут непосредственно вызывать деграну
ляцию тучных клеток. С5а является хемоаттрактантом для нейтрофилов и обеспечивает их приток в очаг воспаления. Эти клетки секретируют активные медиаторы и разрушающие ферменты. Медиаторы влияют на функции лейкоцитов, эндотелия и гладких мышц сосудистой стенки. Ферменты вызывают повреждение тканей и активацию системы кининов. В результате повышения проницаемости сосудов развивается местный отек. Параллельно активируется система свертывания крови, что вместе с аггрегацией тромбоцитов способствует тромбозу. Продукты повреждения тканей могут усиливать активацию системы комплемента по альтернативному пути.

Сочетание этих эффектов анафилатоксинов обеспечивает аккумуляцию клеток и белков сыворотки, характерную для острого воспаления. Основными воспалительными клетками при этом являются нейтрофилы, которые очищают очаг воспаления от возбудителей и, в то же время, могут повреждать ткани организма секретируемыми продуктами: протеазами, реактивными кислородными радикалами.

Поскольку С3а пептид является хемоаттрактантом и для моноцитов/макрофагов, то продуцируемые этими клетками провоспалительные цитокины вносят свой вклад в развитие воспаления. Показана патогенетическая роль С 5а при опосредованных лейкоцитами легочных дисфункциях при остром респираторном дистресс-синдроме, бактериальных пневмониях, кистозном фиброзе, хронических заболеваниях легких.

В формирующемся на месте отложения иммунных комплексов очаге воспаления иммунных комплексов (ИК) могут связываться с воспалительными клетками через FcR или CR1 рецепторы и индуцировать местную секрецию цитокинов и вазоактивных медиаторов, которые тоже вносят свой вклад в развитие воспаления.

Для воспаления легких, опосредованного иммунными комплексами и активацией комплемента, характерно воспалительное повреждение легочной ткани. При этом последовательность событий может быть следующей: альвеолярные макрофаги активируются при воздействии иммунных комплексов через FcR и активированными компонентами комплемента через CR1, это приводит к усиленной продукции и секреции провоспалительных цитокинов TNF-a, IL-1, которые усиливают экспрессию молекул ICAM-1 и Е-селектина на сосудистом эндотелии, к которому прикрепляются нейтрофилы, и активируются при участии IL-8 и PA F из эндотелиальных клеток.

Их трансмиграция в альвеолы индуцируется С5а, который генерируется в альвеолах при взаимодействии иммунных комплексов с системой комплемента. Рекрутирование гранулоцитов из сосудов идет при участии интегринов LFA-1 и Мас-1. Активация альвеолярных макрофагов с усилением секреции TNF-a приводит к повышению экспрессии адгезионных молекул ICAM-1 на альвеолярном эпителии.

К этим адгезионным молекулам прикрепляются клетки внутри альвеол: макрофаги и нейтрофилы, которые активируются, секретируют повреждающие цитокины и ферменты. Воспалительное повреждение легких при таком типе воспаления опосредуется рекрутированными нейтрофилами.

На модели воспалительного повреждения легких после депозиции иммунных комплексов было показано, что природным регулятором воспаления служит цитокин IL-10, который способен супрессировать продукцию TNF-a, экспрессию адгезионных молекул ICAM-1 и рекрутирование нейтрофилов в очаг. За счет всех этих механизмов IL-10 уменьшает степень повреждения легких. Продукция IL-10 в легких является конститутивной, она усиливается в первые часы развития иммунокомплексного воспаления.

Иммунное воспаление — гиперчувствительность замедленного типа

Иммунное воспаление — гиперчувствительность замедленного типа (ГЗТ) представляет собой эффекторную фазу специфического клеточного иммунного ответа и включает следующие события: активацию цитокинами сосудистого эндотелия, рекрутирование моноцитов и лимфоцитов из кровяного русла и тканей в очаг ГЗТ, активацию функций макрофагов лимфокинами в очаге гиперчувствительности замедленного типа, элиминацию причинного антигена путем очищения очага ГЗТ от возбудителей и/или повреждение тканей секретируемыми продуктами активированных макрофагов и лимфоцитов. Основными участниками иммунного воспаления являются: моноциты/макрофаги, Т-лимфоциты (ТН1) и эндотелиальные клетки (рис. 6.5).

brlg_6-5.jpg

Рисунок 6.5. Реакция гиперчувствительности замедленного типа (ГЗТ). В верхней левой части рисунка — стадия сенсибилизации при первой встрече с антигеном включает: представление антигена антиген-представляющей клеткой (АРС) Т-лимфоциту (ТН) с последующей его активацией, пролиферацией, дифференцировкой в ТН1, продукцией соответствующих цитокинов. В правой нижней части рисунка — стадия ответа на повторную встречу с тем же антигеном включает: представление антигена и его распознавание ТН1, что ведет к его активации, секреции цитокинов и активации макрофагов.

В процессе иммунного воспаления ведущую роль играют следующие цитокины: IFNy, TNF-a, TNF-в, IL-1, IL-6. В реакциях гиперчувствительности замедленного типа различают острую фазу и стадию хронического воспаления. Острая фаза по своим проявлениям сходна с ранним воспалительным неспецифическим ответом, но отличается тем, что макрофаги исходно активируются не микробными продуктами, а IFNy и другими цитокинами (MIF, GM-CSF). Продукты активированных Т-лимфоцитов IL-3, GM-CSF стимулируют и продукцию моноцитов, и их рекрутирование из кровяного русла (TNF-a, TNF-в, МСР). В результате на месте очага иммунного воспаления формируется мононуклеарный инфильтрат.

В стадии хронического воспаления те же провоспалительные цитокины (IL-1, IL-6, TNF-a) стимулируют пролиферацию фибробластов и синтез коллагена как непосредственно, так и через индукцию каскада других цитокинов: PDGF, TGFp, FGF, которые в совокупности еще усиливают ангиогенез.

Сочетанный эффект перечисленных медленно действующих цитокинов и ростовых факторов при длительной неконтролируемой активации макрофагов в очаге хронического иммунного воспаления ведет к замещению тканей органов (в том числе легких) фиброзной тканью. Фиброз, как правило, сопутствует хроническому иммунному воспалению, приходящему на смену неэффективному острому воспалению, которое не привело к элиминации причинного антигена.

При хроническом течении воспаления с персистенцией сдвигов сывороточных белков, описанных выше в связи с ранним воспалительным ответом, повышенный уровень сывороточного амилоида А может вести к его отложению в интерстициальной ткани в форме фибрилл. Развивается амилоидоз, нарушающий жизненно важные функции.

При ГЗТ активированные макрофаги постепенно претерпевают ряд изменений: увеличиваются в размерах, приобретают морфологию «эпителиоидных» клеток или сливаются, образуя многоядерные гигантские клетки. Такие активированные видоизмененные макрофаги собираются в конгломераты вокруг антиген-содержащих частиц или клеток. Образуется узел воспалительной ткани — гранулема. Гранулема — это характерный ответ в виде хронической формы ГЗТ на длительно персистирующую в ткани микробную инфекцию, например, при туберкулезе или микозах, которые препятствуют распространению инфекции. Исходом гранулемы может быть деструкция ткани вплоть до некроза с последующим фиброзом.

Проникающий через респираторный тракт Cryptococcus neoformans в случаях недостаточно эффективного раннего воспалительного ответа не вычищается из ткани легкого и вызывает персистирующую хроническую инфекцию. В этих случаях защитную роль берет на себя Т-клеточный ответ, эффективность которого во многом зависит от вирулентности возбудителя. Высоковирулентные штаммы гриба вырабатывают меланин, который является скавенджером для свободных радикалов и тем самым защищает возбудителя от антимикробного действия супероксидных и нитроксидных радикалов.

При высоком уровне продукции меланина возбудитель индуцирует минимальный воспалительный ответ в легких, отсроченный и неэффективный. В этом случае снижена продукция TNF-a альвеолярными макрофагами и снижен про-лиферативный ответ Т-лимфоцитов. Дефектность клеточного иммунного ответа на меланин-продуцирующие штаммы гриба проявляется низким содержанием в легких СD4+Т-клеток, минимальным рекрутированием воспалительных клеток, сниженной активацией макрофагов, сниженным очищением легких, повышенной диссеминацией гриба в центральную нервную систему, минимальной выраженностью обоих типов ответа: ТН1 и ТН2.

В генезе индуцированной туберкулезным антигеном в ткани легкого гранулемы ведущую роль играют IFNy и TNF-a. Эти два цитокина обеспечивают максимальную выраженность местного воспаления за счет усиления экспрессии адгезионных молекул и хемокинов, необходимых для рекрутирования моноцитов/макрофагов в очаг воспаления. К тому же IFNy активирует функции макрофагов и способствует дифференцировке ТН1 лимфоцитов в региональных лимфоузлах, а также может усиливать адгезию лимфоцитов к эндотелию при их рекрутировании.

Активированные макрофаги продуцируют не только провоспалительные цитокины, но и противовоспалительные, в том числе IL-10. Этот цитокин ингибирует генерацию ТН1 лимфоцитов в региональных лимфоузлах, ингибирует их активность, препятствует формированию гранулемы и тем самым способствует диссеминации инфекции.

Результатом ГЗТ в респираторном тракте может быть развитие эксудативного воспаления и аккумуляция лейкоцитов в просвете дыхательных путей. Экссудация — выход плазмы через ткани дыхательных путей в просвет — происходит в два этапа. Сначала белки плазмы выходят из мелких сосудов через эндотелий в интерстициальную ткань. Трахео-бронхиальные микрососуды образуют густую сеть в подслизистой и проявляют очень высокую чувствительность к действию провоспалительных медиаторов.

Далее жидкость преодолевает слой эпителия и поступает в просвет дыхательных путей, откуда она может удаляться механизмами очищения. Эффекторная фаза легочной реакции ГЗТ, как правило, достигает максимума через 24 часа после повторной встречи с антигеном и проявляется накоплением в просвете жидкости, гранулоцитов и моноцитов, рекрутированных из кровяного русла.

При системной гранулематозной болезни легких — саркоидозе иммуно-гистологическими исследованиями показано совместное отложение в гранулемах фибрина и цитокина IL-1в. Высказано предположение, что в очаге хронического воспаления, где условия способствуют коагуляции и аккумуляции фибрина, взаимодействие между мононуклеарами и фибриновым матриксом ведет к продукции IL-1в.

Федосеев Г.Б.

Опубликовал Константин Моканов

Источник

Читайте также:  Как убрать воспаление после укуса комара