Воспаление неспецифическая защита организма
Общая неспецифическая защита организма
Понятие об иммунной защите организма. Живые организмы могут существовать только при условии постоянства их внутренней среды. В то же время вокруг существует множество «врагов», которые постоянно стремятся проникнуть внутрь организма и нарушить его целостность. В их числе — болезнетворные агенты (вирусы, бактерии, протисты, микроскопические грибы), а также более крупные паразиты (например, гельминты). Кроме того, организм должен защищаться от агрессивного проникновения во внутреннюю среду через барьерные ткани (кожу, слизистые оболочки желудочно-кишечного тракта, дыхательной и выделительной систем) различных чужеродных веществ из окружающей среды. Порой даже собственные клетки могут представлять угрозу для организма, например клетки, зараженные вирусами, а также злокачественные (раковые) и поврежденные клетки.
Существование и жизнедеятельность организма как целостной системы обеспечивает иммунитет. Как вы уже знаете из курса биологии 9-го класса, иммунитет — это способность организма противостоять вмешательству чужеродных веществ и инфекционных агентов (антигенов), а также сохранять постоянство внутренней среды и свою биологическую индивидуальность.
Понятие s.иммунитет:/ появилось в XIX в. благодаря трудам Луи Пастера и И. И. Мечникова. Они заложили основы иммунологии — науки о защитных реакциях организма, об иммунитете.
В 1880 г. французский ученый Л. Пастер провел опыты с возбудителем куриной холеры и убе-дшся в том, что прививка птицам ослабленных или убитых бактерий защищала их в дальнейшем от живого возбудителя. Л. Пастер предположил, что ослабленные возбудители болезни, введенные в организм, вызывают в нем развитие невосприимчивости к данному заболеванию. Именно это наблюдение дало название явлению иммунитета (от лат. иммунитас — невосприимчивость).
Огромный вклад в становление иммунологии внесли лауреаты Нобелевской премии (1908) И. И. Мечников, обосновавший значение фагоцитирующих клеток в защитных реакциях, и П. Эрлих, доказавший важнейшую роль антител в формировании иммунитета.
В процессе эволюции развилось множество механизмов, защищающих организмы от проникновения в их внутреннюю среду чужеродных агентов. Все эти механизмы можно разделить на две группы: неспецифический (врожденный) и специфический (приобретенный) иммунитет.
Не специфический иммунитет обеспечивается функционированием естественных механических барьеров, препятствующих проникновению антигенов в организм (кожи, слизистых оболочек), некоторых клеток (например, фагоцитов) и рядом физиологических факторов. К врожденному иммунитету относятся такие защитные реакции, как чиханье, кашель, рвота, понос, повышение температуры тела и др. Неспецифическую защиту организма обеспечивают и некоторые вещества, связывающие или повреждающие микроорганизмы (лизоцим, белки системы комплемента) или обеспечивающие противовирусную защиту (интерфероны).
Специфические механизмы иммунитета обеспечиваются иммунной системой, которая распознает и обезвреживает антигены.
Общая (неспецифическая) защита организма. Рассмотрим более подробно некоторые механизмы врожденного иммунитета.
Кожные покровы. Внешний слой кожи — эпидермис — представлен многослойным плоским эпителием. Живые клетки росткового слоя эпидермиса интенсивно делятся и продвигаются к поверхностным слоям, где ороговевают, отмирают и слугциваются. Вместе со слущивающимися ороговевшими клетками с поверхности эпидермиса механически удаляются попавшие на него микроорганизмы и продукты их жизнедеятельности.
Потовая жидкость, вырабатываемая потовыми железами дермы и выделяемая на поверхность эпидермиса, помимо терморегулирующей функции, выполняет и защитную. Благодаря наличию в ее составе низкомолекулярных органических кислот pH потовой жидкости составляет 5,5. Такая кислая среда создает неблагоприятные условия для расселения на коже бактерий и грибков.
В секрете сальных желез дермы также содержатся неблагоприятно действующие на микроорганизмы органические вещества. Кроме того, жировой секрет защищает кожу от иссушения и растрескивания.
На поверхности кожи постоянно обитают представители нормальной кожной микрофлоры, которые могут выступать в качестве антагонистов болезнетворных микроорганизмов, препятствуя их внедрению и размножению.
Таким образом, благодаря совместному действию ряда защитных механизмов здоровая кожа представляет собой серьезную преграду для проникновения патогенных микроорганизмов. Участки кожи, поврежденные в результате травм или ожогов, нередко становятся входными воротами для инфекции.
Слизистые оболочки пищеварительного тракта, дыхательных путей и других органов также препятствуют проникновению болезнетворных микроорганизмов. Барьерная и защитная функции слизистых оболочек обусловлены выделением секретов, содержащих слизь и ряд биологически активных веществ, а также высокой способностью клеток к регенерации.
В состав секретов большинства слизистых оболочек входит бактерицидный белок лизоцим. Он содержится в слюне, слезной жидкости, выделениях слизистых оболочек кишечника, мочевыводящих путей, органов половой системы позвоночных, а также в плазме крови, тканевой жидкости и др. Лизоцим вызывает гибель бактерий, однако он не активен в отношении вирусов.
Бактерицидными свойствами обладают соляная кислота и пищеварительные ферменты, выделяемые клетками слизистой оболочки желудка, а также компоненты желчи, поступающие в просвет тонкого кишечника.
Неповрежденная кожа и слизистые оболочки, как правило, надежно защищают организм от проникновения чужеродных агентов. Однако иногда им удается попасть во внутреннюю среду организма. В этом случае на помощь приходит фагоцитоз. Это защитный механизм, осуществляемый путем захвата и переваривания чужеродных частиц специальными клетками — фагоцитами (от греч. фагос — пожиратель, китос — клетка). При фагоцитозе происходит связывание и поглощение фагоцитом чужеродного агента, например бактерии (рис. 72). К фагоцитам относятся зернистые лейкоциты и тканевые макрофаги. Они способны поглощать и переваривать микроорганизмы и другие чужеродные объекты, а также мертвые, поврежденные и патогенные клетки собственного организма.
Защитная функция фагоцитов впервые была открыта русским ученым И. И. Мечниковым.
И. И. Мечников поместил в тело дафнии спору гриба и заметил, что на спору нападают особые подвижные клетки. Если он вводил слишком много спор, клетки не могли их переварить и животное погибало. Введение шипа розы в прозрачное тело личинки морской звезды привело к сходному результату — вокруг шипа скопилось множество ч.блуяадающих:/ клеток, пытающихся переварить инородное тело. Свои многочисленные исследования И. И. Мечников положил в основу теории фагоцитоза, созданию которой он посвятил 25 лет своей жизни.
Интерфероны — это белки, обладающие противовирусными и противоопухолевыми свойствами. Они вырабатываются лейкоцитами и другими типами клеток. Интерфероны влияют на процессы синтеза белков и нуклеиновых кислот, вызывая в клетках такие изменения, которые препятствуют размножению и распространению вирусов. Как правило, они не спасают клетки, уже пораженные вирусом, но предохраняют от заражения соседние клетки. Кроме того, интерфероны подавляют размножение внутриклеточных бактерий и способны препятствовать развитию злокачественных опухолей.
В состав системы комплемента входит около 20 особых белков, постоянно присутствующих в крови. Некоторые из них могут прикрепляться к мембране бактериальных и других чужеродных клеток. Затем к этим белкам в определенном порядке присоединяются другие белки системы комплемента. В результате образуется комплекс, перфорирующий (т. е. продырявливающий) мембрану, что часто приводит к разрушению чужеродной клетки. Кроме того, клетки, «помеченные» системой комплемента, активно уничтожаются фагоцитами.
В ответ на повреждение клеток и тканей организма (например, в результате травмы) или на действие патогенного раздражителя развивается местная реакция окружающих тканей, которая проявляется в покраснении, отеке, болезненности и часто — в повышении температуры. Такой процесс называется воспалением. Воспаление — защитная реакция организма, которая помогает справиться с инфекцией и восстановить нормальную работу поврежденных тканей.
Воспаление представляет собой целый комплекс событий. Например, в результате травмы под кожу попало определенное количество бактерий. Что при этом происходит? Поврежденные клетки и лейкоциты, находящиеся в травмированном участке тела, выделяют специальные вещества — гистамин и серотонин. Под действием этих веществ расширяются кровеносные сосуды, что усиливает приток крови к поврежденному участку и, как следствие, приводит к покраснению и повышению температуры.
Возрастает также проницаемость стенок капилляров, в результате чего усиливается выход плазмы крови в межклеточное пространство. Это вызывает набухание поврежденного участка ткани — развивается отек.
Через стенки капилляров в очаг воспаления активно проникают фагоцитирующие клетки, которые поглощают чужеродные вещества, микроорганизмы, омертвевшие клетки собственных тканей организма и переваривают их (рис. 73). Нередко фагоциты сами погибают, зашитая организм. Гной, образующийся в очаге воспаления, представляет собой совокупность мертвых клеток организма (в том числе погибших лейкоцитов), микроорганизмов и различных биологически активных веществ.
Все рассмотренные защитные механизмы являются врожденными и лежат в основе неспецифического иммунитета. Название «неспецифический» обусловлено тем, что данная форма иммунитета обеспечивает стандартные, однотипные реакции на антигены без их специфического распознавания. Иными словами, неспецифический иммунитет работает по принципу «свой или чужой», препятствуя проникновению в организм любых чужеродных объектов либо уничтожая их.
Источник
Если возбудитель преодолевает поверхностные барьеры, его встречают факторы второй, иммунобиологической линии неспецифических защитных механизмов. Такие защитные механизмы принято делить на гуморальные и клеточные. Комплекс конституциональных механизмов защиты тканей — эволюционно древняя форма организованной защиты — предшественник индуцированных (иммунных) реакций. Подтверждением этому является то, что значительная часть конституциональных компонентов защиты индуцибельна и находится в тканях в неактивной форме. Их активацию вызывают различные медиаторы воспаления. Ключевую роль в неспецифической защите внутренней среды организма играют комплемент и фагоцитирующие клетки. Их активность во многом дополняют различные БАВ.
Воспаление — комплекс защитно-приспособительных реакций, возникающий в ответ на повреждение или патологическую стимуляцию, вызванную физическим, химическим или биологическим агентом. Впоследствии ткани могут полностью восстанавливать свою структуру и функции, либо в них формируются стойкие дефекты. Нередко острое воспаление меняет свои характеристики и принимает хроническое течение. Большинство реакций острого воспаления значительно изменяет лимфо- и кровообращение в очаге воспаления. Вазодилатация и повышение проницаемости капилляров облегчают выход из просвета капилляров макромолекул (например, компонентов комплемента) и полиморфноядерных фагоцитов, то есть сопровождается образованием экссудата. При умеренной воспалительной реакции экссудат содержит небольшое количество белка (серозный экссудат); при более интенсивной реакции содержание белков (например, фибриногена) резко возрастает (фибринозный экссудат). Механизмы свёртывания направлены на образование фибриновых сгустков, предупреждающих диссеминирование возбудителя с кровью и лимфой. Важный фактор защиты — снижение рН в тканях при воспалении, обусловленное секрецией молочной кислоты фагоцитами. Ацидоз оказывает губительное действие на бактерии и снижает резистентность к антимикробным химиопрепаратам. Воспаление начинается с активации систем комплемента и гемостаза. Многие компоненты этих систем являются медиаторами воспаления.
Гистамин — основной медиатор воспалительных реакций — вызывает расширение поверхностных венул кожи и слизистых оболочек, увеличение сосудистой проницаемости и стимуляцию терминалей чувствительных нейронов типа С (проводят болевые импульсы; их активация вызывает чувство зуда и боли), высвобождающих нейропептиды (вещество Р) в задних рогах спинного мозга. Выброс гистамина из тучных клеток и базофилов индуцируют IgE-зависимые механизмы, различные вещества (опиаты, ами-ногликозиды) и анафилатоксины (компоненты системы комплемента СЗа и С5а).
Кинины — низкомолекулярные пептиды (олигопептиды), увеличивающие проницаемость сосудов и высвобождение медиаторов полиморфноядерными фагоцитами. Предшественники кининов — кининогены (высокомолекулярные белки). Протеолиз кининогенов с образованием кининов осуществляют калликреины — специфические протеазы полиморфноядерных фагоцитов. Ключевой субстрат этих реакций — фактор Хагемана, играющий важную роль в реакциях свёртывания.
Лейкотриены и простагландины, а также их метаболиты, — основные медиаторы острого воспаления. Повышают проницаемость сосудов, вызывают сокращение ГМК. Лейкотриен В4 активирует хемотаксис полиморфноядерных фагоцитов; тромбоксан А2 индуцирует агрегацию тромбоцитов, а простагландины, действуя на гипоталамус, вызывают повышение температуры тела. Кроме того, простагландины воздействуют на нервные окончания волокон типа С — именно поэтому стимулы, в норме не вызывающие болевой реакции, при воспалении провоцируют приступ боли.
Белки острой фазы воспаления. Воспалительная реакция сопровождается высвобождением различных белков (преимущественно из печени), также выполняющих медиаторные функции. Их объединяют общим термином «белки острой фазы воспаления». Наиболее известны С-реактивный белок, липополисахарид-связывающий белок, сывороточный амилоидный белок А, ах-анти-трипсин.
Цитокины. Многие продукты бактерий активируют клетки системы мононуклеарных фагоцитов и лимфоциты; эти клетки отвечают выделением комплекса БАВ. Такие факторы относят к двум крупным классам — цитокины (подклассы: интерлейкины, интерфероны, факторы роста, колониестимулирующие факторы гемопоэзов) и хемокины (хемоаттрактанты). Так, известно не менее 18 интерлейкинов (ИЛ). Большинство из них — также медиаторы иммунных реакций. В воспалительных реакциях основную роль играет ИЛ-1, стимулирующий лихорадочные реакции, повышающий проницаемость сосудов и адгезивные свойства эндотелия, а также активирующий моно- и полиморфноядер-ные фагоциты.
— Вернуться в оглавление раздела «Патофизиология.»
Оглавление темы «Иммунная система.»:
1. Иммунитет. Система иммунобиологического надзора.
2. Виды антигенов. Понятие иммунитет в иммунологии.
3. Иммунная система. Иммунокомпетентные клетки.
4. В-лимфоциты. Созревание В-лимфоцитов.
5. Т-лимфоциты. Виды Т-лимфоцитов. NK-клетки.
6. Антигенпредставляющие клетки. Взаимодействие клеток при иммунном ответе.
7. Активация В-лимфоцита. Реакции клеточно-опосредованного цитолиза.
8. Уничтожение клетки-мишени. Неспецифическая защита организма.
9. Механические барьеры организма.
10. Воспаление как фактор защиты организма.
Источник
Под неспецифическими факторами защиты понимают врожденные внутренние механизмы поддержания генетического постоянства организма, обладающие широким диапазоном противомикробного действия. Именно неспецифические механизмы вступают в качестве первого защитного барьера на пути внедрения инфекционного агента. Неспецифические механизмы не нуждаются в перестройке, в то время как специфические агенты (антитела, сенсибилизированные лимфоциты) появляются спустя несколько дней. Важно отметить, что неспецифические факторы защиты действуют против многих патогенных агентов одновременно.
Кожа. Неповрежденная кожа является мощным барьером для проникновения микроорганизмов. При этом имеют значение механические факторы: отторжение эпителия и выделения сальных и потовых желез, обладающие бактерицидными свойствами (химический фактор).
Слизистые оболочки. В разных органах они являются одним из барьеров на пути проникновения микробов. В дыхательных путях механическая защита осуществляется с помощью мерцательного эпителия. Движение ресничек эпителия верхних дыхательных путей постоянно передвигает пленку слизи вместе с микроорганизмами по направлению к естественным отверстиям: ротовой полости и носовым ходам. Кашель и чиханье способствуют удалению микробов. Слизистые оболочки выделяют секреты, обладающие бактерицидными свойствами, в ^частности за счет лизоцима и иммуноглобулина типа А.
Секреты пищеварительного тракта наряду со своими специальными свойствами обладают способностью обезвреживать многие патогенные микробы. Слюна — первый секрет, обрабатывающий пищевые вещества, а также микрофлору, поступающую в ротовую полость. Кроме лизоцима слюна содержит ферменты (амилазу, фосфатазу и др.). Желудочный сок также губительно действует на многие патогенные микробы (выживают возбудители туберкулеза, сибиреязвенная бацилла). Желчь вызывает гибель пастерелл, но в отношении сальмонелл и кишечной палочки неэффективна.
В кишечнике животного находятся миллиарды различных микроорганизмов, но в его слизистой оболочке содержатся мощные антимикробные факторы, в результате чего заражение через нее бывает редко. Нормальная микрофлора кишечника обладает выраженными антагонистическими свойствами по отношению ко многим патогенным и гнилостным микроорганизмам.
Лимфатические узлы. В случае, если микроорганизмы преодолевают кожный и слизистый барьеры, то защитную функцию начинают выполнять лимфатические узлы. В них и инфицированном участке ткани развивается воспаление — важнейшая приспособительная реакция, направленная на ограниченное действие повреждающих факторов. В зоне воспаления происходит фиксация микробов образовавшимися нитями фибрина. В воспалительном процессе кроме свертывающей и фибринолитической систем принимают участие система комплемента, а также эндогенные медиаторы (простогландиды, вазоактивные амины и др.). Воспаление сопровождается повышением температуры, отеком, покраснением и болезненностью. В дальнейшем в освобождении организма от микробов и других чужеродных факторов активное участие принимает фагоцитоз (клеточные факторы защиты).
Фагоцитоз (от греч. phago — ем, cytos — клетка) — процесс активного поглощения клетками организма попадающих в него патогенных живых или убитых микробов и других чужеродных частиц с последующим перевариванием при помощи внутриклеточных ферментов. У низших одноклеточных и многоклеточных организмов с помощью фагоцитоза осуществляется процесс питания. У высших организмов фагоцитоз приобрел свойство защитной реакции, освобождения организма от чужеродных веществ, как поступивших извне, так и образующихся непосредственно в самом организме. Следовательно, фагоцитоз не только реакция клеток на внедрение патогенных микробов — это более общая по сущности биологическая реакция клеточны£ элементов, которая отмечается как при патологических, так и при физиологических состояниях.
Виды фагоцитирующих клеток. Фагоцитирующие клетки обычно делят на две основные категории: микрофаги (или полиморфно-нуклеарные фагоциты — ПМН) имакрофаги (или мононуклеарные фагоциты — МН). Абсолютное большинство фагоцитирующих ПМН составляют нейтрофилы. Среди макрофагов различают подвижные (циркулирующие) и неподвижные (оседлые) клетки. Подвижные макрофаги — это моноциты периферической крови, а неподвижные — это макрофаги печени, селезенки, лимфатических узлов, выстилающие стенки мелких сосудов и других органов и тканей.
Одним из основных функциональных элементов макро- и микрофагов являются лизосомы — гранулы диаметром 0,25— 0,5 мкм, содержащие большой набор ферментов (кислая фосфатаза, В-глюкуронидаза, миелопероксидаза, коллагеназа, лизоцим и др.) и ряд других веществ (катионные белки, фагоцитин, лактоферрин), способных участвовать в разрушении различных антигенов.
Фазы фагоцитарного процесса. Процесс фагоцитоза включает следующие этапы: 1) хемотаксис и прилипание (адгезия) частиц к поверхности фагоцитов; 2) постепенное погружение (захват) частиц в клетку с последующим отделением части клеточной мембраны и образованием фагосомы; 3) слияние фагосомы с лизосомами; 4) ферментативное переваривание захваченных частиц и удаление оставшихся микробных элементов. Активность фагоцитоза связана с наличием в сыворотке крови опсонинов. Опсонины — белки нормальной сыворотки крови, вступающие в соединение с микробами, благодаря чему последние становятся более доступными фагоцитозу. Различают термостабильные и термолабильные опсонины. Первые в основном относятся к иммуноглобулину G, хотя могут способствовать фагоцитозу опсонины, относящиеся к иммуноглобулинам А и М. К термолабильным опсонинам (разрушаются при температуре 56 °С в течение 20 мин) относятся компоненты системы комплемента — С1, С2, СЗ и С4.
Фагоцитоз, при котором происходит гибель фагоцитированного микроба, называют завершенным (совершенным). Однако в ряде случаев микробы, находящиеся внутри фагоцитов, не погибают, а иногда даже размножаются (например, возбудитель туберкулеза, сибиреязвенная бацилла, некоторые вирусы и грибы). Такой фагоцитоз называют незавершенным (несовершенным). Следует отметить, что макрофаги кроме фагоцитоза выполняют регуляторные и эффекторные функции, кооперативно взаимодействуя с лимфоцитами в ходе специфического иммунного ответа.
Гуморальные факторы. К гуморальным факторам неспецифической защиты организма отнесены: нормальные (естественные) антитела, лизоцим, пропердин, бета-лизины (лизины), комплемент, интерферон, ингибиторы вирусов в сыворотке крови и ряд других веществ, постоянно присутствующих в организме.
Нормальные антитела. В крови животных и человека, которые ранее никогда не болели и не подвергались иммунизации, обнаруживают вещества, вступающие в реакцию со многими антигенами, но в низких титрах, не превышающих разведения 1:10—1:40. Эти вещества были названы нормальными или природными антителами. Считают, что они возникают в результате естественной иммунизации различными микроорганизмами.
Лизоцим. Лизоцим относится к лизосомальным ферментам, содержится в слезах, слюне, носовой слизи, секрете слизистых оболочек, сыворотке крови и экстрактах органов и тканей, молоке, много лизоцима в белке яиц кур. Лизоцим устойчив к нагреванию (инактивируется при кипячении), обладает свойством лизировать живые и убитые, в основном грамположительные, микроорганизмы.
Секреторный иммуноглобулин А. Выяснено, что SIgA постоянно присутствует в содержимом секретов слизистых оболочек, в секретах молочных и слюнных желез, в кишечном тракте, обладает выраженными противомикробными и противовирусными свойствами.
Пропердин (лат. pro и perdere — подготовить к разрушению). Описан в 1954 г. Пиллимером как фактор неспецифической защиты и цитолиза. Содержится в нормальной сыворотке крови в количестве до 25 мкг/мл. Это сывороточный белок с мол. массой 220 000. Пропердин принимает участие в разрушении микробной клетки, нейтрализации вирусов, лизисе некоторых эритроцитов. Принято считать, что активность проявляется за счет не самого пропердина, а системы пропердина (комплемента и двухвалентных ионов магния). Пропердин нативный играет значительную роль в нсспецифической активации комплемента (альтернативный путь активации комплемента).
Лизины — белки сыворотки крови, обладающие способностью лизировать некоторые бактерии или эритроциты. В сыворотке крови многих животных содержатся бета-лизины, вызывающие лизис культуры сенной палочки, а также весьма активные в отношении многих патогенных микробов.
Лактоферрин. Лактоферрин — негиминовый гликопротеид, обладающий железосвязывающей активностью. Связывает два атома трехвалентного железа, конкурируя с микробами, в результате чего рост микробов подавляется. Синтезируется полиморфно-ядерными лейкоцитами и гроздьевидными клетками железистого эпителия. Является специфическим компонентом секрета желез — слюнных, слезных, молочных, дыхательного, пищеварительного и мочеполового трактов. Принято считать, что лактоферрин — фактор местного иммунитета, защищающий от микробов эпителиальные покровы.
Комплемент. Комплементом называют многокомпонентную систему белков сыворотки крови и других жидкостей организма, которые играют важную роль в поддержании иммунного гомеостаза. Впервые описал Бухнер в 1889 г. под названием «алексин» — термолабильный фактор, в присутствии которого наблюдается лизис микробов. Термин «комплемент» ввел Эрлих в 1895 г. Уже давно было замечено, что специфические антитела в присутствии свежей сыворотки крови способны вызвать гемолиз эритроцитов или лизис бактериальной клетки, но если сыворотку перед постановкой реакции прогреть при 56 °С в течение 30 мин, то лизис не произойдет. Оказалось, что гемолиз (лизис) происходит за счет наличия комплемента в свежей сыворотке. Наибольшее количество комплемента имеется в сыворотке крови морских свинок.
Система комплемента состоит не менее чем из 11 различных белков сыворотки крови, получивших обозначение от С1 до С9. С1 имеет три субъединицы — Clq, Clr, С Is. Активированная форма комплемента обозначается черточкой сверху (С).
Существует два пути активации (самосборки) системы комплемента — классический и альтернативный, различающиеся пусковыми механизмами.
При классическом пути активации происходит связывание первого компонента комплемента С1 с иммунными комплексами (антиген + антитело), куда включаются последовательно субкомпоненты (Clq, Clr, Cls), С4, С2 и СЗ. Комплекс С4, С2 и СЗ обеспечивает фиксацию на клеточной мембране активированного С5 компонента комплемента, а затем включается через ряд реакций С6 и С7, которые способствуют фиксации С8 и С9. В результате происходит повреждение клеточной стенки или лизис бактериальной клетки.
При альтернативном пути активации комплемента активаторами служат непосредственно сами вирусы, бактерии или экзотоксины. В альтернативном пути активации не участвуют компоненты С1, С4 и С2. Активация начинается со стадии СЗ, куда включается группа белков: Р (пропердин), В (проактиватор), D (конвертаза проактиватора СЗ) и ингибиторы J и Н. Пропердин в реакции стабилизирует конвертазы СЗ и С5, поэтому этот путь активации называют также системой пропердина. Реакция начинается с присоединения фактора В к СЗ, в результате ряда последовательных реакций к комплексу (конвертаза СЗ) встраивается Р (пропердин), который воздействует как фермент на СЗ и С5, начинается каскад активации комплемента с С6, С7, С8 и С9, что приводит к повреждению клеточной стенки или лизису клетки.
Таким образом, для организма система комплемента служит эффективным механизмом защиты, которая активируется в результате иммунных реакций или при непосредственном контакте с микробами или токсинами. Отметим некоторые биологические функции активированных компонентов комплемента: Clq участвует в регуляции процесса переключения иммунологических реакций с клеточных на гуморальные и наоборот; С4, связанный с клеткой, способствует иммунному прикреплению; СЗ и С4 усиливают фагоцитоз; С1/С4, связываясь с поверхностью вируса, блокируют рецепторы, ответственные за внедрение вируса в клетку; СЗа и С5а идентичны анафилактосинам, они воздействуют на нейтрофильные гранулоциты, последние выделяют лизосомные ферменты, разрушающие чужеродные антигены, обеспечивают направленную миграцию микрофагов, вызывают сокращение гладких мышц, усиливают воспаление (рис. 13).
Установлено, что макрофаги синтезируют С1, С2, С4, СЗ и С5. Гепатоциты — СЗ, С6, С8, клетки.
Интерферон, Выделен в 1957 г. английскими вирусологами А. Айзеке и И. Линденман. Интерферон первоначально рассматривался как фактор противовирусной защиты. В дальнейшем выяснилось, что это группа белковых веществ, функция которых заключается в обеспечении генетического гомеостаза клетки. Индукторами образования интерферона помимо вирусов являются бактерии, бактериальные токсины, митогены и др. В зависимости от клеточного происхождения интерферона и индуцирующих его синтез факторов различают «-интерферон, или лейкоцитарный, который продуцируется лейкоцитами, обработанными вирусами и другими агентами, интерферон, или фибробластный, который продуцируется фибробластами, обработанными вирусами или другими агентами. Оба эти интерферона отнесены к типу I. Иммунный интерферон, или у-интерферон, продуцируется лимфоцитами и макрофагами, активированными невирусными индукторами.
Интерферон принимает участие в регуляции различных механизмов иммунного ответа: усиливает цитотоксическое действие сенсибилизированных лимфоцитов и К-клеток, оказывает антипролиферативное и противоопухолевое действие и др. Интерферон обладает видотканевой специфичностью, т. е. более активен в той биологической системе, в которой выработан, защищает клетки от вирусной инфекции лишь в том случае, если взаимодействует на них до контакта с вирусом.
Процесс взаимодействия интерферона с чувствительными клетками подразделяют на несколько этапов: 1) адсорбция интерферона на клеточных рецепторах; 2) индукция антивирусного состояния; 3) развитие антивирусной резистентности (накопление интерферо-ниндуцированных РНК и белков); 4) выраженная резистентность к вирусному инфицированию. Следовательно, интерферон не вступает в прямое взаимодействие с вирусом, а препятствует проникновению вируса и ингибирует синтез вирусных белков на клеточных рибосомах в период репликации вирусных нуклеиновых кислот. У интерферона также установлены радиационно-защитные свойства.
Ингибиторы сыворотки крови. Ингибиторы — неспецифические противовирусные вещества белковой природы, содержащиеся в нормальной нативной сыворотке крови, секретах эпителия слизистых оболочек дыхательного и пищеварительного трактов, в экстрактах органов и тканей. Обладают способностью подавлять активность вирусов вне чувствительной клетки, при нахождении вируса в крови и жидкостях. Ингибиторы подразделяют на термолабильные (теряют свою активность при прогревании сыворотки крови при 60—62 °С в течение 1 ч) и термостабильные (выдерживают нагревание до 100 °С). Ингибиторы обладают универсальной вируснейтрализующей и антигемагглютинирующей активностью в отношении многих вирусов.
Помимо сывороточных ингибиторов описаны ингибиторы тканей, секретов и экскретов животных. Такие ингибиторы оказались активными в отношении многих вирусов, например, секреторные ингибиторы респираторного тракта обладают антигемагглютинирующей и вируснейтрализующей активностью.
Бактерицидная активность сыворотки крови (БАС). Свежая сыворотка крови человека и животных обладает выраженными, в основном бактериостатическими, свойствами в отношении многих возбудителей инфекционных болезней. Основными компонентами, подавляющими рост и развитие микроорганизмов, являются нормальные антитела, лизоцим, пропердин, комплемент, монокины, лейкины и другие вещества. Поэтому БАС является интегрированным выражением противомикробных свойств, входящих в состав гуморальных факторов неспецифической защиты. БАС зависит от условий содержания и кормления животных, при плохом содержании и кормлении активность сыворотки значительно снижается.
Значение стресса. К неспецифическим факторам защиты также относят защитно-адаптационные механизмы, получившие название «стресс», а факторы, вызывающие стресс, Г. Силъе названы стрессорами. По Силье, стресс — особое неспецифическое состояние организма, возникающее в ответ на действие различных повреждающих факторов внешней среды (стрессоров). Кроме патогенных микроорганизмов и их токсинов стрессорами могут быть холод, тепло, голод, ионизирующая радиация и другие агенты, обладающие способностью вызывать ответные реакции организма. Адаптационный синдром может быть общим и местным. Он обусловливается действием гипофизарно-адренокортикальной системы, связанной с гипоталамическим центром. Под влиянием стрессора гипофиз начинает усиленно выделять адренокортикотропный гормон (АКТГ), стимулирующий функции надпочечников, вызывая у них усиленное выделение противовоспалительного гормона типа кортизона, снижающего защитно-воспалительную реакцию. Если действие стрессора слишком сильно или продолжительно, то в процессе адаптации возникает заболевание.
При интенсификации животноводства количество стрессовых факторов, воздействию которых подвергаются животные, значительно возрастает. Поэтому профилактика стрессовых воздействий, снижающих естественную резистентность организма и обусловливающих заболевания, является одной из важнейших задач ветеринарно-зоотехнической службы.
Источник