Роль макрофагов в воспалении

Роль макрофагов в воспалении thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 сентября 2018;
проверки требует 1 правка.

Макрофáги (от др.-греч. μακρός — большой, и φάγος — пожиратель) — клетки в организме животных и в т.ч. человека, способные к активному захвату и перевариванию бактерий, остатков погибших клеток и других чужеродных или токсичных для организма частиц. Термин «макрофаги» введён Мечниковым [1][2]. Устаревшие, вышедшие из употребления синонимы: гистиоцит-макрофаг, гистофагоцит, макрофагоцит, мегалофаг-пожиратель.

Макрофаги присутствуют практически в каждом органе и ткани, где они выступают в качестве первой линии иммунной защиты от патогенов и играют важную роль в поддержании тканевого гомеостаза[3][4].

Происхождение[править | править код]

В 1970-х годах была сформулирована гипотеза о системе мононуклеарных фагоцитов, в соответствии с которой макрофаги представляют собой конечную стадию дифференцировки моноцитов крови, которые, в свою очередь, происходят из мультипотентных стволовых клеток крови в костном мозге[5]. Однако исследования, проведённые в 2008—2013 годах, показали, что макрофаги тканей взрослых мышей представлены двумя популяциями, которые различаются по своему происхождению, механизму поддержания численности и функциям[6][7][8]. Первая популяция это тканевые, или резидентные макрофаги. Они происходят из эритромиелоидных предшественников (не имеющих отношения к стволовым клеткам крови) желточного мешка и эмбриональной печени и заселяют ткани на различных этапах эмбриогенеза. Резидентные макрофаги приобретают тканеспецифичные характеристики и поддерживают свою численность за счёт пролиферации in situ без какого-либо участия моноцитов. К долгоживущим тканевым макрофагам относят купферовские клетки печени, микроглию центральной нервной системы, альвеолярные макрофаги лёгких, перитонеальные макрофаги брюшной полости, клетки Лангерганса кожи, макрофаги красной пульпы селезёнки[3][7].

Вторая популяция представлена относительно короткоживущими макрофагами моноцитарного (костномозгового) происхождения. Относительное содержание таких клеток в ткани зависит от её типа и возраста организма. Так макрофаги костномозгового происхождения составляют менее 5% всех макрофагов головного мозга, печени и эпидермиса, небольшую долю макрофагов лёгких, сердца и селезёнки (однако эта доля увеличивается с возрастом организма) и большую часть макрофагов собственной пластинки слизистой оболочки кишечника[8][3][6][7]. Количество макрофагов моноцитарного происхождения резко увеличивается при воспалении и нормализуется по его окончании.

Активация макрофагов[править | править код]

In vitro, под воздействием экзогенных стимулов, макрофаги могут активироваться. Активация сопровождается существенным изменением профиля экспрессии генов и формированием клеточного фенотипа специфичного для каждого типа стимулов. Исторически первыми были открыты два во многом противоположных типа активированных макрофагов, которые по аналогии с Th1/Th2 назвали M1 и M2. Макрофаги типа М1 дифференцируются ex vivo при стимуляции предшественников интерфероном-γ при участии фактора транскрипции STAT1[9]. Макрофаги типа М2 дифференцируются ex vivo при стимуляции интерлейкином 4 (через STAT6).

Долгое время М1 и М2 были единственными известными типами активированных макрофагов, что позволило сформулировать гипотезу об их поляризации. Однако к 2014 году накопились сведения, указывающие на существование целого спектра активированных состояний макрофагов, которые не соответствуют ни типу М1, ни типу М2[10][11]. В настоящее время, нет убедительных доказательств того, что активированные состояния макрофагов, наблюдаемые in vitro, соответствуют тому, что происходит в живом организме, и являются ли эти состояния постоянными или временными[12].

Макрофаги, ассоциированные с опухолью[править | править код]

Злокачественные опухоли оказывают влияние на своё тканевое микроокружение, в том числе и на макрофаги. Моноциты крови инфильтрируют опухоль и под влиянием сигнальных молекул, секретируемых опухолью (M-CSF[en], GM-CSF, IL4, IL10, TGF-β), дифференцируются в макрофаги с «антивоспалительным» фенотипом и, подавляя антиопухолевый иммунитет и стимулируя формирование новых кровеносных сосудов, способствуют росту и метастазированию опухоли[13].

Примечания[править | править код]

  1. Jean-Marc Cavaillon. The historical milestones in the understanding of leukocyte biology initiated by Elie Metchnikoff // Journal of Leukocyte Biology. — 2011-09-01. — Т. 90, вып. 3. — С. 413–424. — ISSN 1938-3673. — doi:10.1189/jlb.0211094.
  2. Arthur M. Silverstein. Ilya Metchnikoff, the phagocytic theory, and how things often work in science // Journal of Leukocyte Biology. — 2011-09-01. — Т. 90, вып. 3. — С. 409–410. — ISSN 1938-3673. — doi:10.1189/jlb.0511234.
  3. 1 2 3 Chen Varol, Alexander Mildner, Steffen Jung. Macrophages: development and tissue specialization // Annual Review of Immunology. — 2015-01-01. — Т. 33. — С. 643–675. — ISSN 1545-3278. — doi:10.1146/annurev-immunol-032414-112220.
  4. Yasutaka Okabe, Ruslan Medzhitov. Tissue biology perspective on macrophages // Nature Immunology. — 2015-12-17. — Т. 17, вып. 1. — С. 9–17. — ISSN 1529-2916. — doi:10.1038/ni.3320.
  5. van Furth R., Cohn Z. A., Hirsch J. G., Humphrey J. H., Spector W. G., Langevoort H. L. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. (англ.) // Bulletin of the World Health Organization. — 1972. — Vol. 46, no. 6. — P. 845—852. — PMID 4538544. [исправить]
  6. 1 2 Ugel S., De Sanctis F., Mandruzzato S., Bronte V. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. (англ.) // The Journal of clinical investigation. — 2015. — Vol. 125, no. 9. — P. 3365—3376. — doi:10.1172/JCI80006. — PMID 26325033. [исправить]
  7. 1 2 3 Florent Ginhoux, Martin Guilliams. Tissue-Resident Macrophage Ontogeny and Homeostasis // Immunity. — 2016-03-15. — Т. 44, вып. 3. — С. 439–449. — ISSN 1097-4180. — doi:10.1016/j.immuni.2016.02.024.
  8. 1 2 Perdiguero E. G., Geissmann F. The development and maintenance of resident macrophages. (англ.) // Nature immunology. — 2016. — Vol. 17, no. 1. — P. 2—8. — doi:10.1038/ni.3341. — PMID 26681456. [исправить]
  9. Peter J. Murray, Judith E. Allen, Subhra K. Biswas, Edward A. Fisher, Derek W. Gilroy. Macrophage activation and polarization: nomenclature and experimental guidelines // Immunity. — 2014-07-17. — Т. 41, вып. 1. — С. 14–20. — ISSN 1097-4180. — doi:10.1016/j.immuni.2014.06.008.
  10. Fernando O. Martinez, Siamon Gordon. The M1 and M2 paradigm of macrophage activation: time for reassessment // F1000prime Reports. — 2014-01-01. — Т. 6. — С. 13. — ISSN 2051-7599. — doi:10.12703/P6-13.
  11. Jia Xue, Susanne V. Schmidt, Jil Sander, Astrid Draffehn, Wolfgang Krebs. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation // Immunity. — 2014-02-20. — Т. 40, вып. 2. — С. 274–288. — ISSN 1097-4180. — doi:10.1016/j.immuni.2014.01.006.
  12. Matthias Nahrendorf, Filip K. Swirski. Abandoning M1/M2 for a Network Model of Macrophage Function // Circulation Research. — 2016-07-22. — Т. 119, вып. 3. — С. 414–417. — ISSN 1524-4571. — doi:10.1161/CIRCRESAHA.116.309194.
  13. Alberto Mantovani, Paola Allavena. The interaction of anticancer therapies with tumor-associated macrophages // The Journal of Experimental Medicine. — 2015-04-06. — Т. 212, вып. 4. — С. 435–445. — ISSN 1540-9538. — doi:10.1084/jem.20150295.

См. также[править | править код]

  • Медицина
  • Иммунная система
  • Лейкоциты

Источник

Основная роль в развитии и поддержании хронического воспа­ления принадлежит системе фагоцитирующих макрофагов (это понятие заменило широко применявшийся ранее, но по существу недостаточно обоснованный термин «ретикулоэндотелиальная система»). Основная клетка этой системы—макрофаг, развив­шийся из моноцита крови. Моноциты, происходящие из стволовой клетки костного мозга, поступают вначале в периферическую кровь, а из нее в ткани, где под влиянием различных местных стимулов превращаются в макрофаги.

Читайте также:  Что такое купирование воспаления и болевого синдрома

Последние имеют чрезвы­чайно большое значение в осуществлении адаптивных реакций организма — иммунных, воспалительных и репаративных. Участию в подобных реакциях способствуют такие биологические свойства макрофагов, как способность мигрировать в очаги воспаления, возможность быстрого и стойкого увеличения продукции клеток костным мозгом, активный фагоцитоз чужеродного материала с быстрым расщеплением последнего, активация под действием чужеродных стимулов, секреция ряда биологически активных ве­ществ, способность «обрабатывать» проникший в организм анти­ген с последующей индукцией иммунного процесса.

Принципиально важно также, что макрофаги являются долгоживущими клет­ками, способными длительно функционировать в воспаленных тканях. Существенно, что они способны пролиферировать в очагах воспаления; при этом возможна трансформация макрофагов в эпителиоидные и гигантские многоядерные клетки.

Не обладая иммунологической специфичностью (как Т- и В-лимфоциты), макрофаг действует в качестве неспецифической вспомогательной клетки, обладающей уникальной способностью не только захватывать антиген, но и обрабатывать его так, что последующее распознавание этого антигена лимфоцитами значи­тельно облегчается. Этот этап особенно необходим для активации Т-лимфоцитов (для развития иммунных реакций замедленного типа и для продукции антител к тимусзависимым антигенам).

Кроме участия в иммунных реакциях за счет предварительной обработки антигена и его последующего «представления» лимфоцитам, макрофаги осуществляют защитные функции и более не­посредственно, уничтожая некоторые микроорганизмы, грибы и клетки опухолей.

Таким образом, при ревматических заболеваниях в клеточных реакциях иммунного воспаления участвуют не только специфически иммунизированные лимфоциты, но и не имеющие иммунологической специфичности моноциты и макрофаги.

Эти клетки привлекаются моноцитарными хемотаксическими веществами, вырабатываемыми в очагах воспаления. К ним отно­сятся С5а, частично денатурированные белки, калликреин, активатор плазминогена, основные белки из лизосом нейтрофилов Т-лимфоциты вырабатывают подобный фактор при контакте ее специфическим антигеном, В-лимфоциты — с иммунными комп­лексами.

Кроме того, лимфоциты продуцируют также факторы угнетающие миграцию макрофагов (т. е. фиксирующие их в очаге воспаления) и активирующие их функцию. В воспалительных оча­гах в отличие от нормальных условий наблюдаются митозы мак­рофагов и таким образом количество этих клеток нарастает также за счет местной пролиферации.

Значение макрофагов в поддержании воспалительного процесса определяется рассматриваемыми ниже противовоспалительными агентами, освобождаемыми из этих клеток.

1. Простагландины.

2. Лизосомные ферменты (в частности, при фагоцитозе комп­лексов антиген — антитело, причем клетка при их выделении не разрушается).

3. Нейтральные протеазы (активатор плазминогена, коллагеназа, эластаза). В норме их количество ничтожно, но при чужерод­ной стимуляции (при фагоцитозе) продукция данных ферментов индуцируется и они выделяются в значительных количествах. Продукция нейтральных протеаз угнетается ингибиторами белко­вого синтеза, в том числе глюкокортикостероидами. Выработка активатора плазминогена и коллагеназы стимулируется также факторами, секретируемыми активированными лимфоцитами.

4. Фосфолипаза Аз, освобождающая из более сложных комп­лексов арахидоновую кислоту — основной предшественник простагландинов. Активность этого фермента тормозится глюкокортико­стероидами.

5. Фактор, стимулирующий освобождение из костей как мине­ральных солей, так и органической основы костного матрикса. Этот фактор реализует свое влияние на костную ткань за счет прямого воздействия, не требуя присутствия остеокластов.

6. Ряд компонентов комплемента, которые активно синтезиру­ются и выделяются макрофагами: С3, С4, С2 и, по-видимому, так­же С1 и фактор В, необходимый для альтернативного пути активирования комплемента. Синтез этих компонентов повышается при активировании макрофагов и тормозится ингибиторами бел­кового синтеза.

7. Интерлейкин-1, который является типичным представителем цитокинов — биологически активных веществ полипептидной при­роды, вырабатываемых клетками (прежде всего клетками иммун­ной системы). В зависимости от источников продукции этих ве­ществ (лимфоциты или моноциты) нередко применяются терми­ны «лимфокины» и «монокины». Название «интерлейкин» с соответствующим номером используется для обозначения конкретных цитокинов — особенно тех, которые опосредуют клеточное взаимо­действие. Пока не вполне ясно, представляет ли интерлейкин-1, являющийся наиболее важным монокином, одно вещество или семейство полипептидов, обладающих очень близкими свойствами.

К этим свойствам относятся следующие:

  • стимуляция В-клеток, ускоряющих их трансформацию в плазматические клетки;
  • стимуляция активности фибробластов и синовиоцитов с повышенной выработкой ими простагландинов и коллагеназы;
  • пирогенное влияние, реализующееся в развитии лихорадки;
  • активирование синтеза в печени острофазовых белков, в частности сывороточного предшественника амилоида (этот эф­фект, возможно, является опосредованным — благодаря стиму­ляции выработки интерлейкина-6).

Среди системных эффектов интерлейкина-1, помимо лихорад­ки, могут быть отмечены также нейтрофилез и протеолиз скелет­ных мышц.

8. Интерлейкин-6, который также активирует В-клетки, стимулирует гепатоциты к выработке острофазовых белков и обладает свойствами b-интерферона.

9. Колониестимулирующие факторы, способствующие образо­ванию в костном мозге гранулоцитов и моноцитов.

10. Фактор некроза опухолей (ФНО), который не только действительно способен вызывать некроз опухолей, но и играет заметную роль в развитии воспаления. Этот полипептид, состоящий из 157 аминокислот, в раннюю фазу воспалительной реакции способствует прилипанию нейтрофилов к эндотелию и способствует тем самым их проникновению в очаг воспаления. Он служит так­же мощным сигналом к выработке токсичных кислородных радикалов и является стимулятором В-клеток, фибробластов и эндо­телия (2 последних типа клеток при этом вырабатывают колониестимулирующие факторы).

Клинически важно, что ФНО, так же как интерлейкин-1 и интерферон, подавляют активность липопротеинлипазы, которая обеспечивает отложение жира в организме. Именно поэтому при воспалительных заболеваниях часто отмеча­ется выраженное похудание, не соответствующее калорийному питанию и сохранившемуся аппетиту. Отсюда второе название ФНО — кахектин.

Активация макрофагов, проявляющаяся увеличением их разме­ра, большим содержанием ферментов, нарастанием способстности к фагоцитозу и уничтожению микробов и опухолевых клеток, может быть и неспецифичной: за счет стимуляции иными (не относящимися к имеющемуся патологическому процессу) микроорганизмами, минеральным маслом, лимфокинами, продуцируемыми Т-лимфоцитами, в меньшей степени — В-лимфоцитами.

Макрофаги активно участвуют в резорбции кости и хряща. При электронномикроскопическом исследовании на границе пан­нуса и суставного хряща обнаружены макрофаги, тесно связанные с частичками переваренных коллагеновьгх волокон. То же явление отмечено и при контакте макрофагов с резорбируемой костью.

Таким образом, макрофаги играют важную роль в развитии воспалительного процесса, его поддержании и хронизации и уже априорно могут рассматриваться как одна из главных «мишеней» антиревматической терапии.

Читайте также:  Причины воспаления лимфоузлов горла у взрослого

Опубликовал Константин Моканов

Источник

Сто тридцать лет назад замечательный русский исследователь И.И. Мечников в опытах на личинках морских звезд из Мессинского пролива сделал удивительное открытие, круто изменившее не только жизнь самого будущего Нобелевского лауреата, но и перевернувшее тогдашние представления об иммунной системе.

Втыкая в прозрачное тело личинки розовый шип, ученый обнаружил, что занозу окружают и атакуют крупные амебоидные клетки. И если чужеродное тело было небольшим, эти блуждающие клетки, которые Мечников назвал фагоцитами (от греч. пожиратель), могли полностью поглотить пришельца.

Долгие годы считалось, что фагоциты выполняют в организме функции «войск быстрого реагирования». Однако исследования последних лет показали, что благодаря своей огромной функциональной пластичности эти клетки еще и «определяют погоду» многих метаболических, иммунологических и воспалительных процессов, как в норме, так и при патологии. Это делает фагоциты перспективной мишенью при разработке стратегии лечения ряда тяжелых заболеваний человека

Подвижные клетки иммунной системы – фагоциты или макрофаги, присутствуют практически во всех тканях организма. Они осуществляют активный захват, переваривание и обез­вреживание чужеродных микроорганизмов (вирусов, бактерий, одноклеточных, паразитов), а также утилизацию биологического «мусора», такого как «невостребованные» и погибшие клетки (например, «стареющие» эритроциты).

В зависимости от своего микроокружения тканевые макрофаги могут выполнять и различные специализированные функции. Например, макрофаги костной ткани – остеокласты, также занимаются выведением из кости гидроксиапатита кальция. При недостаточности этой функции развивается мраморная болезнь – кость становится чрезмерно уплотненной и при этом хрупкой.

Но самым, пожалуй, удивительным свойством макрофагов оказалась их огромная пластичность, т. е. способность изменять свою транскрипционную программу («включение» тех или иных генов) и свой облик (фенотип). Следствием этой особенности является высокая разнородность клеточной популяции макрофагов, среди которых присутствуют не только «агрессивные» клетки, встающие на защиту организма-хозяина; но и клетки с «полярной» функцией, отвечающие за процессы «мирного» восстановления поврежденных тканей.

Липидные «антенны»

Своей потенциальной «многоликостью» макрофаг обязан необычной организации генетического материала – так называемому открытому хрома­тину. Этот не до конца изученный вариант структуры клеточного генома обеспечивает быстрое изменение уровня экспрессии (активности) генов в ответ на различные стимулы.

Так выглядят под флуоресцентным микроскопом макрофаг/пенистые клетки, полученные при введении бактериального полисахарида. Зеленые липидные включения, окрашенные специальным красителем, могут занимать более половины клеточной цитоплазмы

Выполнение макрофагом той или иной функции зависит от характера получаемых им стимулов. Если стимул будет распознан как «чужой», то происходит активация тех генов (и соответственно функций) макрофага, которые направлены на уничтожение «пришельца». Однако макрофаг могут активировать и сигнальные молекулы самого организма, которые побуждают эту иммунную клетку участвовать в организации и регуляции обмена веществ. Так, в условиях «мирного времени», т. е. при отсутствии патогена и обусловленного им воспалительного процесса, макрофаги участвуют в регуляции экспрессии генов, отвечающих за мета­болизм липидов и глюкозы, дифференцировку клеток жировой ткани.

Интеграция между взаимоисключающими «мирным» и «военным» направлениями работы макрофагов осуществляется путем изменения активности рецепторов клеточного ядра, представляющих собой особую группу регуляторных белков.

Среди этих ядерных рецепторов следует особо выделить так называемые липидные сенсоры, т. е. белки, способные взаимодействовать с липидами (например, окисленными жирными кислотами или производными холестерина) (Смирнов, 2009). Нарушение работы этих чувствительных к липидам регуляторных белков в макро­фагах может быть причиной системных обмен­ных нарушений. Например, дефицит в макрофагах одного из этих ядерных рецепторов, обозначаемых как PPAR-гамма, приводит к развитию диабета 2 типа и дисбалансу липидного и углеводного обмена во всем организме.

Клеточные метаморфозы

В разнородном сообществе макрофагов на основе базовых характеристик, определяющих их принципиальные функции, выделяют три основных клеточных субпопуляции: макрофаги М1, М2 и Мox, которые участвуют, соответственно, в процессах воспаления, восстановления поврежденных тканей, а также защите организма от окислительного стресса.

«Классический» макрофаг М1 формируется из клетки-предшественника (моноцита) под действием каскада внутриклеточных сигналов, запускающихся после распознавания инфекционного агента с помощью специальных рецепторов, расположенных на поверхности клетки.

Образование «пожирателя» М1 происходит в результате мощной активации генома, сопровождаемой активацией синтеза более чем сотни белков – так называемых факторов воспаления. К ним относятся ферменты, способствующие генерации свободных радикалов кислорода; белки, привлекающие в очаг воспаления другие клетки иммунной системы, а также белки, способные разрушать оболочку бактерий; воспалительные цитокины – вещества, обладающие свойствами активировать иммунные клетки и оказывать токсическое действие на остальное клеточное окружение. В клетке активируется фагоцитоз и макрофаг начинает активно разрушать и переваривать все, что встретится на его пути (Шварц, Свистельник, 2012). Так появляется очаг воспаления.

Однако уже на начальных этапах воспалительного процесса макрофаг М1 начинает активно секретировать и противовоспалительные субстанции – низкомолекулярные липидные молекулы. Эти сигналы «второго эшелона» начинают активировать вышеупомянутые липидные сенсоры в новых «рекрутах»-моноцитах, прибывающих в очаг воспаления. Внутри клетки запускается цепь событий, в результате которых активирующий сигнал поступает на определенные регуляторные участки ДНК, усиливая экспрессию генов, отвечающих за гармонизацию обмена веществ и одновременно подавляя активность «провоспалительных» (т. е. провоцирующих воспаление) генов (Душкин, 2012).

В зависимости от своего микроокружения макрофаги могут радикально менять свой фенотип, каждый раз исполняя в прямом смысле «полярные» функции. М1 макрофаги защищают организм от инфекционных агентов, М2 курируют процессы восстановления поврежденных тканей, а Мox макрофаги участвуют в антиоксидантной защите организма

Так в результате альтернативной активации образуются макрофаги М2, которые завершают воспалительный процесс и способствуют тканевому восстановлению. Популяцию М2 макрофагов можно, в свою очередь, разделить на группы в зависимости от их специализации: уборщики мертвых клеток; клетки, участвующие в реак­ции приобретенного иммунитета, а также макрофаги, секретирующие факторы, которые способствуют замещению погибших тканей соединительной тканью.

Еще одна группа макрофагов – Мох, формируется в условиях так называемого окислительного стресса, когда в тканях возрастает опасность повреждения их свободными радикалами. Например, Мох составляют около трети всех макрофагов атеросклеротической бляшки. Эти иммунные клетки не только сами устойчивы к повреждающим факторам, но и участвуют в анти­оксидантной защите организма(Gui et al., 2012).

Пенистый камикадзе

Одной из самых интригующих метаморфоз макрофага является его превращение в так называемую пенистую клетку. Такие клетки были обнаружены в атеро­склеротических бляшках, а свое название получили из-за специфического внешнего вида: под микроскопом они напоминали мыльную пену. По сути, пенистая клетка – это тот же макрофаг М1, но переполненный жировыми включениями, преимущественно состоящими из водонерастворимых соединений холестерина и жирных кислот.

Была высказана гипотеза, ставшая общепринятой, что пенистые клетки образуются в стенке атеросклеротических сосудов в результате неконтролируемого поглощения макрофагами липопротеинов низкой плотности, переносящих «плохой» холестерин. Однако впоследствии было обнаружено, что накопление липидов и драматическое (в десятки раз!) возрастание скорости синтеза ряда липидов в макрофагах можно спровоцировать в эксперименте только лишь одним воспалением, без всякого участия липопротеинов низкой плотности (Душкин, 2012).

Читайте также:  Лекарства для лечения воспаления глаза

Это предположение подтвердилось клиническими наблюдениями: оказалось, что превращение макрофагов в пенистую клетку происходит при разнообразных заболеваниях воспалительной природы: в суста­вах – при ревматоидном артрите, в жировой ткани – при диабете, в почках – при острой и хронической недостаточности, в ткани мозга – при энцефалитах. Однако понадобилось около двадцати лет исследований, чтобы понять, как и зачем макрофаг при воспалении превращается в клетку, нафаршированную липидами.

Макрофаги образуются из клеток-предшественников (моноцитов) уже в самые первые часы воспаления, вызванного определенным стимулом (например, бактерией). Макрофаги М1 и пенистые клетки начинают продуцировать провоспалительные факторы и кислородные метаболиты и активно захватывать «чужеродные» молекулы. На 1—3-е сутки воспалительного процесса пенистые клетки начинают секретировать противовоспалительные факторы, которые активируют липидные сенсоры моноцитов, мигрирующих из русла крови в очаг воспаления. Так образуются макрофаги М2. Сами пенистые клетки погибают в ходе запрограммированной клеточной смерти (апоптоза) и поглощаются макрофагами М2. Это сигнал о завершении воспаления (5-е сутки). На фото – фазово-контрастная микроскопия клеток, полученных из перитонеальной полости мышей при воспалении

Оказалось, что активация провоспалительных сигнальных путей в М1 макрофагах приводит к «выключению» тех самых липидных сенсоров, которые в нормальных условиях контролируют и нормализуют липидный обмен (Душкин, 2012). При их «выключении» клетка и начинает накапливать липиды. При этом образующиеся липидные включения представляют собой вовсе не пассивные жировые резервуары: входящие в их состав липиды обладают способностью усиливать воспалительные сигнальные каскады. Главная цель всех этих драматических изменений – любыми средствами активировать и усилить защитную функцию макрофага, направленную на уничтожение «чужих» (Melo, Drorak, 2012).

Однако высокое содержание холестерина и жирных кислот дорого обходится пенистой клетке – они стимулируют ее гибель путем апоптоза, запрограммированной клеточной смерти. На внешней поверхности мембраны таких «обреченных» клеток обнаруживается фосфолипид фосфатидилсерин, в норме расположенный внутри клетки: появление его снаружи является своеобразным «похоронным звоном». Это сигнал «съешь меня», который воспринимают М2 макрофаги. Поглощая апоптозные пенистые клетки, они начинают активно секретировать медиаторы заключительной, восстановительной стадии воспаления.

Фармакологическая мишень

Воспаление как типовой патологический процесс и ключевое участие в нем макрофагов является, в той или иной мере, важной составляющей в первую очередь инфекционных заболеваний, вызванных различными патологическими агентами, от простейших и бактерий до вирусов: хламидиальные инфекции, туберкулез, лейшманиоз, трипаносомоз и др. Вместе с тем макрофаги, как уже упоминалось выше, играют важную, если не ведущую, роль в развитии так называемых метаболических заболеваний: атеросклероза (главного виновника сердечно-сосудистых заболеваний), диабета, нейродегенеративных заболеваний мозга (болезнь Альцгеймера и Паркинсона, последствия инсультов и черепно-мозговых травм), ревматоидного артрита, а также онкологических заболеваний.

Разработать стратегию управления этими клетками при различных заболеваниях позволили современные знания о роли липидных сенсоров в формировании различных фенотипов макрофага.

Так, оказалось, что в процессе эволюции хламидии и туберкулезные палочки научились использовать липидные сенсоры макрофагов, чтобы стимулировать не опасную для них альтернативную (в М2) активацию макрофагов. Благодаря этому поглощенная макрофагом туберкулезная бактерия может, купаясь как сыр в масле в липидных включениях, спокойно дожидаться своего освобождения, а после гибели макрофага размножаться, используя содержимое погибших клеток в качестве пищи (Melo, Drorak, 2012).

Если в этом случае использовать синтетические акти­ваторы липидных сенсоров, которые препятствуют образованию жировых включений и, соответственно, предотвращают «пенистую» трансформацию макрофага, то можно подавить рост и понизить жизнеспособность инфекционных патогенов. По крайней мере в экспериментах на животных уже удалось в разы снизить обсемененность легких мышей туберкулезными бациллами, используя стимулятор одного из липидных сенсоров или ингибитор синтеза жирных кислот (Lugo-Villarino et al., 2012).

Вопреки первоначальной гипотезе, макрофаг/пенистая клетка, наполненная жировыми включениями, может формироваться даже при низкой концентрации липопротеинов – для этого достаточно лишь воспалительного процесса. Введение в перитонеальную полость мышей стимулятора воспаления зимозана, полученного из оболочек дрожжевых клеток, вызывает драматическое возрастание скорости синтеза неполярных липидов и их предшественников – жирных кислот и холестерина, которые и образуют липидные включения в макрофагах Еще один пример – такие болезни, как инфаркт миокарда, инсульт и гангрена нижних конечностей, опаснейшие осложнения атеросклероза, к которым приводит разрыв так называемых нестабильных атеросклеротических бляшек, сопровождаемый моментальным образованием тромба и закупоркой кровеносного сосуда.

Формированию таких нестабильных атеросклеротических бляшек и способствует макрофаг М1/пенистая клетка, который продуцирует ферменты, растворяющие коллагеновое покрытие бляшки. В этом случае наиболее эффективная стратегия лечения – превращение нестабильной бляшки в стабильную, богатую коллагеном, для чего требуется трансформировать «агрессивный» макрофаг М1 в «умиротворенный» М2.

Экспериментальные данные свидетельствуют, что подобной модификации макрофага можно добиться, подавляя в нем продукцию провоспалительных факто­ров. Такими свойствами обладает ряд синтетических активаторов липидных сенсоров, а также природные вещества, например, куркумин – биофлавоноид, входя­щий в состав корня куркумы, хорошо известной индийской пряности.

Нужно добавить, что такая трансформация макрофагов актуальна при ожирении и диабете 2 типа (большая часть макрофагов жировой ткани имеет М1 фенотип), а также при лечении нейродегенеративных заболеваний мозга. В последнем случае в мозговых тканях происходит «классическая» активация макрофагов, что приводит к повреждению нейронов и накоплению токсичных веществ. Превращение М1-агрессоров в мирных дворников М2 и Mox, уничтожающих биологический «мусор», может в ближайшее время стать ведущей стратегией лечения этих заболеваний (Walace, 2012).

С воспалением неразрывно связано и раковое перерождение клеток: например, имеются все основания считать, что 90 % опухолей в печени человека возникает как следствие перенесенных инфекционных и токсических гепатитов. Поэтому с целью профилактики раковых заболеваний необходимо контролировать популяцию М1 макрофагов.

Однако не все так просто. Так, в уже сформированной опухоли макрофаги преимущественно приобретают признаки статуса М2, который содействует выживанию, размножению и распространению самих раковых клеток. ­Более того, такие макрофаги начинают подавлять противораковый иммунный ответ лимфоцитов. Поэтому для лечения уже образовавшихся опухолей разрабатывается другая стратегия, основанная на стимулировании у макрофагов признаков классической М1-активации (Solinas et al., 2009).

Примером такого подхода служит технология, разработанная в ново­сибирском Институте клиниче­ской иммунологии СО РАМН, при которой макрофаги, полученные из крови онкобольных, культивируют в присутствии стимулятора зимозана, который накапливается в клетках. Затем макрофаги вводят в опухоль, где зимозан освобождается и начинает стимулировать классическую активацию «опухолевых» макрофагов.

Стратегия управления фенотипом макрофага при различных заболеваниях различна: в одних случаях (например, при диабете и других метаболических заболеваниях), необходимо способствовать уменьшению количества «агрессивных» макрофагов М1 и увеличению «мирных» макрофагов М2. При заболеваниях же инфекционной природы и опухолях требуется, наоборот, увеличить число макрофагов-пожирателей М1

Сегодня становится все более очевидно, что соединения, вызывающие мета­морфозы макрофагов, оказывают выраженное атеропротективное, антидиабетическое, нейропротективное действие, а также защищают ткани при аутоиммунных заболеваниях и ревматоидном артрите. Однако такие препараты, имеющиеся на сегодня в арсенале практикующего врача, – фибраты и производные тиазолидона, хотя и снижают смертность при этих тяжелых заболеваниях, но при этом имеют выраженные тяжелые побочные действия.

Эти обстоятельства стимулируют химиков и фармакологов к созданию безопасных и эффективных аналогов. За рубежом – в США, Китае, Швейцарии и Израиле уже проводятся дорогостоящие клинические испытания подобных соединений синтетического и природного происхождения. Несмотря на финансовые трудности, российские, в том числе и новосибирские, исследователи также вносят свой посильный вклад в решение этой проблемы.

Так, на кафедре химии Новосибирского государственног?