Роль фагоцита при воспалении
Фагоцитоз – активный захват и поглощение живых клеток или каких-либо небольших частиц одноклеточными организмами либо особыми клетками – фагоцитами. Фагоцитоз – одна из защитных реакций организма, главным образом при воспалении. Открыт И.И.Мечниковым в 1882 году.
При значительной вирулентности микроба и при достаточной инфекционной дозе кожные и слизистые барьеры могут оказаться совершенно недостаточными, и микроб проникает в кожу, слизистые оболочки либо в подкожный или в подслизистый слой. В значительном числе случаев при этом развивается воспалительный процесс. Изучение роли этого процесса в защите организма от микробов связано с именем И.И. Мечникова.
Мечников изучал функции зародышевых листков, в частности среднего зародышевого листка – мезодермы у эмбрионов беспозвоночных животных; вводя в организм губки какое-либо постороннее тело (стеклянный капилляр), он наблюдал, что оно окружалось подвижными амебовидными клетками мезодермы, способными заглатывать различные инертные частицы. Аналогичный процесс – устремление лейкоцитов, окружение и поглощение ими инородного тела, вызывающего воспалительный процесс – наблюдался и у других видов животных, как имеющих кровеносную систему, так и лишённых её. Этот процесс поглощения клетками микробов и других корпускулярных элементов И.И. Мечников назвал фагоцитозом. Многочисленные исследования, поставленные с различными микробами, позволили Мечникову сделать заключение о превалирующем значении фагоцитоза в воспалительных процессах и о защитной функции самого процесса воспаления. Фагоцитоз в воспалительной реакции является действительно одним из существенных механизмов защиты на всех ступенях зоологической лестницы. Однако защитный механизм воспалительной реакции оказался сложнее, чем это можно было думать, и фагоцитоз не исчерпывает всех тех возможностей защиты, которые несёт с собой воспалительный процесс. В механизме воспаления существенную роль играют гистамин и серотонин, освобождающиеся главным образом из тучных клеток. Они влияют на проницаемость стенок капилляров и основного вещества соединительной ткани и усиливают фагоцитарную активность эндотелия и мезенхимы. Существенное значение имеют глобулиновый фактор проницаемости и его ингибитор, а также многие другие вещества типа ферментов, меняющиеся на различных стадиях воспалительного процесса.
Воспалённая ткань способна фиксировать также белки и инертные частицы. Чужеродный белок, введенный в зону воспаления в коже или в брюшной полости, задерживается на более длительный период, чем в нормальных тканях, причём задержка в коже более длительна, чем в брюшной полости. Подобные же задержки в очаге воспаления наблюдались при введении красок в брюшную полость. Следовательно, воспалительный процесс, независимо от того, протекает ли он в иммунном или не иммунном организме, препятствует диссеминации микробов. Но возникает он не сразу после внедрения микроба, даже в тех случаях, когда микроб, например стафилококк, обладает способностью вызывать наиболее сильное воспаление. Если микробы обладают большой инвазионной способностью, некоторая часть их проникает в организм раньше, чем воспалительная реакция возникнет и станет настолько интенсивной, что сможет препятствовать диссеминации возбудителя. Скорость возникновения острой воспалительной реакции зависит от характера раздражителя. Также существенное значение имеет и стадия воспалительного процесса. Первые этапы воспалительной реакции сопровождаются активной гиперемией и ускоренным током крови и лимфы. В этот период бактерии могут быстро уноситься с места введения, что может способствовать развитию инфекционного процесса. Однако эта стадия весьма непродолжительна, и наступающие вскоре сосудистые расстройства и приток лейкоцитов препятствуют распространению инфекции. Таким образом, воспалительная реакция является механизмом защиты, препятствующим диссеминации микробов, но вступающим в действие не сразу же после внедрения микробов в организм, а по истечении нескольких часов. В последней стадии воспалительного процесса, когда в зоне воспаления скапливаются громадные количества лейкоцитов, имеет место и интенсивное уничтожение оставшихся микробов благодаря фагоцитозу.
Механизм фиксации и аккумуляции микробов и инородных веществ в зоне воспаления сложен. Лимфатическая блокада, возникающая в воспалительной зоне вследствие стаза и свёртывания лимфы, является одним из основных факторов, препятствующих диссеминации микробов из воспалительного очага. Эта блокада образует механический барьер, состоящий из коагулированной плазмы, и представляет собой значительное препятствие для прохождения микробов. При остром воспалительном процессе наблюдается не замедление, а ускорение тока лимфы через зону воспаления, и бактерии, и другие инородные частицы фиксируются в этой зоне благодаря действию различных физико-химических факторов.
Значительную роль в фиксации и уничтожении микробов в воспалительном очаге играют фагоцитоз и антитела.
Лейкоциты, которые в изобилии скапливаются в зоне воспаления, образуют своеобразный вал, препятствующий диссеминации организмов. Наряду с этим клеточные элементы лейкоцитарного вала активно уничтожают возбудителя. Повышение капиллярного давления и увеличение проницаемости капилляров, имеющие место при воспалении, вызывают увеличение количества жидкости, проникающей через эндотелий капилляров. Воспалительная зона обогащается содержащимися в крови веществами, в том числе и антителами (нормальными и иммунными). Антитела, воздействуя на бактерии, делают их более доступными клеточным факторам защиты и задерживают их в зоне воспаления. Возможно, что алексин, бетализин, и другие неспецифические факторы защиты, концентрируясь в зоне воспаления, играют роль в сложном механизме защиты, обусловленном воспалительной реакцией.
Как известно, основным свойством фагоцитов является их способность к внутриклеточному перевариванию. Однако не всегда и не в отношении всех микробов эта способность выражена в должной степени. Иногда микробы, захваченные фагоцитами, не только не перевариваются ими, но сохраняются и размножаются в них (незавершённый фагоцитоз). В этом случае фагоцитоз не является защитной реакцией организма, а наоборот, защищает микробы от бактерицидных свойств организма. Однако такое явление встречается редко. Другой особенностью фагоцитов является их положительный химиотаксис в отношении микробов и их продуктов. Положительный химиотаксис и обусловливает возможность уничтожения проникающих в организм микробов скапливающимися в месте их проникновения лейкоцитами. Однако большие дозы микробов или токсинов могут вызвать отрицательный химиотоксис, и тогда фагоцитарная реакция не может быть реализована. При воспалительной реакции имеет место значительное скопление лейкоцитов, которые проходят через стенки сосудов вследствие химиотоксического притяжения. Гной, накапливающийся при воспалительных процессах, и представляет собой эти скопления.
Но и при отсутствии воспаления защитная роль фагоцитоза может быть обнаружена вполне демонстративно. При введении иммунному животному микробов последние немедленно захватываются фагоцитами; так, например, вводя культуру сибирской язвы лягушке, можно наблюдать, что через некоторое время все микробы фагоцитируются, и инфекция не развивается. Тоже можно наблюдать при введении самых разнообразных непатогенных микробов любому животному. В восприимчивом организме фагоцитоз либо вовсе не наблюдается, либо наблюдается только в незначительной степени. Фагоциты способны захватывать живых микробов. Если взять у лягушки, получившей культуру сибиреязвенных бацилл, экссудат, содержащий лейкоциты, целиком захватившие всех бацилл, и ввести его морской свинке, последняя погибнет от сибирской язвы, так как лейкоциты лягушки, попав в неподходящую среду в организме морской свинки, погибают и освобождают таким образом заключённых в них вполне вирулентных микробов. Доказательством несомненного значения фагоцитоза как защитного механизма организма является также то обстоятельство, что подавление фагоцита или создание для него препятствий понижает резистентность организма. Если споры столбняка хорошо отмыть от токсина и ввести в животный организм, то они быстро фагоцитируются, причём заболевания столбняком не наступит. Однако если ввести эти споры в ватном тампоне, когда лейкоциты не смогут их поглотить или сделают это с большим опозданием, споры успевают прорасти и наступает заболевание и смерть. Если ввести культуру микробов вместе с молочной кислотой, обладающей отрицательным химиотоксическим действием на лейкоцитов, смерть наступит от такой дозы культуры, которая без кислоты легко переносится животным. С другой стороны, увеличение количества лейкоцитов, особенно в месте внедрения инфекции, несомненно, повышает резистентность организма. Оно может быть вызвано и неспецифическими агентами. Несомненно, что лейкоцитоз является одним из факторов неспецифического иммунитета, который воспроизводят при так называемой протеинотерапии.
Связывание (адсорбция) лейкоцитами токсинов многократно было описано разными авторами в отношении как дифтерийного, так и столбнячного токсина, хотя полученные результаты были довольно противоречивы.
Реакция фагоцитоза имеет защитную функцию не при всех инфекционных заболеваниях. Например, при менингите, вызванном палочкой инфлюэнцы, последняя поглощается, но не разрушается фагоцитами, защищающими её от действия антител. Но при подавляющем большинстве бактерийных инфекций фагоцитоз в той или иной мере несёт защитные функции. Иное значение имеет фагоцитоз при вирусных инфекциях. Фагоцитарная реакция не при всех инфекционных процессах оказывается равнозначной. Это вполне соответствует взглядам И.И. Мечникова, который при изучении фагоцитарных реакций у различных животных и с различными микробами установил различные формы этой реакции в её эволюционном развитии. Стафилококк захватывается и убивается лейкоцитами, гонококк фагоцитируется ими, но остаётся живым внутри лейкоцитов, и, наконец, некоторые вирусы вообще не фагоцитируются лейкоцитами. Возможно, что эти три примера представляют собой три различные стадии эволюционного развития фагоцитарной реакции.
Источник
№ 45 Виды фагоцитоза, механизмы и стадии фагоцитоза. Причины недостаточности фагоцитоза и их значение при воспалении.
Одним из важнейших факторов воспалительной реакции является фагоцитоз.
Фагоцитоз — это процесс поглощения и переваривания клеткой различных корпускулярных агентов (частиц), которые являются или становятся инородными для всего организма или для отдельных его частей.
В этом определении необходимо подчеркнуть следующие два важных момента. Во-первых, при фагоцитозе происходит процесс поглощения и переваривания не только частиц, изначально являющихся чужеродными для организма но и тех, которые могут стать таковыми при определенных условиях. Например, микроорганизмы, составляющие нормальную микрофлору кишечника, при их попадании в ткани парэнтерально становятся объектами фагоцитоза. Во-вторых, какой-то объект может не быть чужеродным для одной части организма и стать чужеродным для другой. Например, эритроциты в кровеносном русле для организма не чужеродны, но если они попадут в ткани при кровоизлиянии, то становятся чужеродными и могут стать объектами фагоцитоза.
Внутриклеточному захвату и перевариванию могут подвергаться не только корпускулярные агенты, но и жидкие. Захват клетками капель жидкости и использование этих жидкостей в процессах внутриклеточного пищеварения носит название пиноцитоза.
Явление фагоцитоза было открыто в конце декабря 1882 г. И. И. Мечниковым, и в дальнейшем, в результате его работ на протяжении четверти века, было доказано, что фагоцитоз — это один из основных механизмов воспалительной реакции, поскольку он направлен на уничтожение причинного фактора.
В фагоцитозе могут принимать участие разнообразные элементы ретикуло-эндотелиальной системы. Но поскольку в данном разделе учебника речь идет о воспалении, фагоцитоз будет рассматриваться применительно только к воспалительной реакции, в которой в качестве основной фагоцитирующей клетки выступают нейтрофильные полиморфноядерные лейкоциты крови.
Для более четкого понимания механизмов фагоцитоза следует коротко остановиться на некоторых современных представлениях о строении лейкоцитов, поскольку все, что происходит с фагоцитирующей клеткой, в значительной степени связано с особенностями ее строения.
Согласно этим представлениям лейкоциты имеют клеточный скелет, в состав которого входят микротрубочки, актиновые, миозиновые и промежуточные филаменты. Другими словами, лейкоцит обладает своим опорно-двигательным аппаратом, элементы которого связаны с рецепторами, расположенными на поверхности мембраны, в связи с чем цитоскелет лейкоцита в значительной степени определяет и особенности реакции последнего на различные воздействующие на него раздражители. При этом необходимо заметить, что клеточный скелет не представляет собой чего-то постоянного как структурно, так и функционально. Его элементы могут перегруппировываться в зависимости от конкретных условий процесса и требований, которые предъявляются лейкоциту этими условиями. Кроме того, элементы цитоскелета могут менять свое физико-химическое состояние: основной принцип функционирования этого структурного комплекса — процесс обратимой деполимеризации входящих в него белков, регулируемый ионами кальция, кальцийсвязывающим белком-кальмодулином, а также внутриклеточным соотношением цАМФ и цГМФ. Этим определяются важнейшие функции лейкоцита: передвижение, захват чужеродных частиц, внутриклеточное переваривание. Дефекты клеточного скелета лейкоцитов делают их неполноценными, не способными эффективно участвовать в защите организма от факторов, вызывающих воспалительную реакцию.
Процесс фагоцитоза включает в себя пять стадий.
Первая стадия — адгезия, то есть прилипание лейкоцита к эндотелиальной клетке и прохождение его через стенку сосуда. На мембране лейкоцита располагаются высокомолекулярные протеины, которые при воспалении меняют свои свойства, благодаря чему лейкоцит может прилипнуть к сосудистому эндотелию. Затем у лейкоцита образуются псевдоподии, как у амебы. Такая псевдоподия проникает между эндотелиальными клетками и в нее переливается протоплазма лейкоцита, который таким образом оказывается по другую сторону эндотелиальной выстилки сосуда. Базальная мембрана сосуда лизируется коллагеназой лейкоцита, и он выходит из просвета сосуда в ткань. Первая стадия процесса изучена еще не полностью. Установлено, например, что часть лейкоцитов попадает затем в лимфатические сосуды и возвращается обратно в кровь, вновь выходит из кровеносного сосуда и вновь в него возвращается. Другая же часть лейкоцитов, выйдя из кровеносного сосуда, устремляется к очагу воспаления. Однако причины такого деления лейкоцитов на два самостоятельных в своем функционировании пула пока не выяснены.
Вторая стадия — передвижение фагоцита к объекту фагоцитоза. Это передвижение начинается и поддерживается благодаря тому, что в очаге воспаления образуются вещества, к которым лейкоцит обладает положительным хемотаксисом, то есть при наличии этих веществ лейкоцит начинает двигаться в их сторону. Как выяснено, вещества, к которым лейкоцит проявляет положительный хемотаксис, воздействуют на рецепторы его оболочки, в результате чего возникает сенсорный эффект — лейкоцит начинает «чувствовать», «ощущать» эти вещества.
Лейкоциты обладают положительным хемотаксисом по отношению к целому ряду веществ, в частности, к различным полипептидам. Особо важное значение в контроле за хемотаксическим процессом имеют циклические нуклеотиды. Показано, что цГМФ повышает чувствительность лейкоцитов к хемотаксическому фактору и усиливает их движение. Противоположным действием обладает цАМФ.
Вещества, к которым у лейкоцитов имеется положительный хемотаксис, меняют физико-химическое состояние их протоплазмы, переводя ее из состояния геля в состояние золя и обратно. Таким образом, какая-то часть протоплазмы лейкоцита становится жидкой и в нее постепенно переливается вся клетка.
Перемещение фагоцита в пространстве осуществляется следующим образом.
Установлено, что протоплазма фагоцита состоит из центрального жидкого слоя (золя) и более плотного наружного — кортикального геля. Под влиянием веществ, к которым лейкоцит обладает положительным хемотаксисом, на переднем полюсе лейкоцита кортикальный гель превращается в золь, то есть становится более жидким. В эту «разжиженную» часть лейкоцита переливается золь его центральной части, в результате чего лейкоцит укорачивается сзади и удлиняется спереди. Этот процесс по аналогии можно сравнить с выдавливанием зубной пасты из тюбика, с той лишь разницей, что и сам «тюбик» (оболочка лейкоцита) устремляется вслед за «пастой» (за протоплазмой).
Существует и другой способ движения фагоцита. Микротрубочки цитоскелета в тот период, когда лейкоцит находится в спокойном состоянии, не имеют четкой ориентации, расположены хаотически и выполняют в основном опорную функцию. Когда же лейкоцит начинает двигаться, эти трубочки меняют свое расположение в цитоплазме и ориентируются точно по направлению движения. Разжиженная часть кортикального геля с переднего полюса лейкоцита засасывается в эти трубочки и с силой выбрасывается из них назад. Возникает реактивная тяга: сами трубочки начинают двигаться в противоположном направлении и толкают лейкоцит вперед. Другими словами, лейкоцит передвигается как ракета. И, наконец, исходя из наличия в лейкоците актин-миозиновой системы, можно предположить, что в нем происходят процессы, аналогичные мышечному сокращению, благодаря чему он и передвигается. Скорость движения лейкоцитов может быть довольно большой. Подсчитано, что за сутки лейкоцит может пройти 5-6 см, то есть «добраться» с периферии до центра очень большого по своим размерам воспалительного очага. Передвижение лейкоцитов является энергозависимым процессом, то есть идет с потреблением энергии, причем эту энергию лейкоцит получает от гликолитических реакций. Блокада процессов окислительного фосфорилирования соединениями синильной кислоты не останавливает движения фагоцитов, в то время как монойодацетат, угнетая гликолиз, тормозит этот процесс.
Вполне возможно, что именно отсутствие «эффекта Пастера» в очаге воспаления связано с тем, что лейкоциты для своего передвижения нуждаются в энергии, образующейся именно в процессе анаэробного расщепления углеводов.
Третья стадия — прилипание фагоцита к фагоцитируемому агенту. В механизмах этой стадии важную роль играют электрические заряды фагоцита и объекта, а также интенсивность процессов хемотаксиса.
Четвертая стадия — погружение объекта в фагоцит, которая может осуществляться двумя путями. Во-первых, фагоцит, подобно амебе, способен выпускать псевдоподии, которые смыкаются над объектом фагоцитоза, и он оказывается внутри фагоцита (рисунок а). Во-вторых, это погружение может происходить путем инвагинации клеточной оболочки фагоцита (рисунок б), в нем образуется все увеличивающаяся впадина, в которую и погружается объект. Затем края впадины смыкаются над объектом, и он оказывается внутри фагоцитирующей клетки. Если же объект по своим размерам очень большой, то он окружается несколькими фагоцитами, которые внедряют в него сливающиеся друг с другом цитоплазматические отростки, и таким путем осуществляется совместный фагоцитоз несколькими фагоцитами одного объекта (рисунок в).
В процессе погружения объекта в фагоцит важную роль играют электрические заряды объекта и фагоцита, интенсивность хемотаксиса и величина поверхностного натяжения в месте соприкосновения фагоцита и фагоцитируемого объекта. Чем ниже последний показатель, тем интенсивнее идет погружение. Поэтому такие антитела как опсонины и бактериотропины, снижающие поверхностное натяжение, способствуют интенсификации фагоцитирования микроорганизмов.
Пятая стадия — переваривание. Вначале живой объект, попавший в фагоцит и находящийся в его пищеварительной вакуоли, должен быть убит. Живые объекты фагоцит не переваривает. Основную роль в гибели живых объектов, попавших в фагоцит, играет резкий сдвиг рН протоплазмы фагоцита в кислую сторону. После того, как объект убит, пищеварительная вакуоль, в которой он находится, сливается с одной или несколькими лизосомами фагоцита, и лизосомные ферменты осуществляют процесс пищеварения в этой полости.
Живой объект может быть фагоцитирован и иным путем: в гранулах лейкоцита содержатся бактерицидные вещества, которые выбрасываются в окружающую среду, и, таким образом, лейкоцит убивает микроорганизм. Затем осуществляется процесс его погружения и переваривания.
Таковы процессы, лежащие в основе так называемого завершенного фагоцитоза. Однако фагоцитоз протекает по-иному, если микроорганизмы — объекты фагоцитоза, либо обладают мощной полисахаридной капсулой, защищающей их от кислой реакции среды, либо выделяют вещества, которые препятствуют слиянию лизосом с пищеварительной вакуолью, в результате чего процесс внутриклеточного пищеварения не может быть осуществлен. В этом случае имеет место так называемый незавершенный фагоцитоз. Он заканчивается тем, что через некоторое время либо живые микроорганизмы выбрасываются из фагоцита, либо фагоцит гибнет. Аналогичная ситуация может возникать при некоторых генетически обусловленных дефектах фагоцитарной системы.
Источник