Межклеточные взаимодействия в процессах воспаления
МЕЖКЛЕ́ТОЧНЫЕ ВЗАИМОДЕ́ЙСТВИЯ, процессы, обеспечивающие формирование тканей и обмен информацией между клетками, необходимый для интеграции их функций. Совр. знания о М. в. основаны гл. обр. на данных, полученных с помощью культуры клеток; наиболее изучены у животных. Различают контактные и гуморально-опосредованные межклеточные взаимодействия.
Контактные М. в. в многоклеточных организмах осуществляются с участием белков поверхности клеток (взаимно комплементарных или идентичных), обеспечивающих их адгезию. К белкам адгезии относят: кадгерины, активность которых проявляется в присутствии ионов Са2+; селектины, взаимодействующие с углеводными структурами клеточной поверхности; интегрины, связывающие рецепторные молекулы поверхности клеток или белки межклеточного матрикса, и ряд др. групп белковых молекул. В наибольшей степени сигнальная функция присуща интегринам. Они способны передавать информацию как с поверхности внутрь клетки, так и в обратном направлении. Часть интегринов цитоплазмы клеток связана с белками цитоскелета и сигнальными ферментами (протеинкиназами). При участии интегринов эти белки концентрируются в зонах контакта клеток с внеклеточным матриксом и др. клетками (фокальные контакты), что обусловливает изменение формы и функциональных свойств клетки и активацию ряда генов. Участие цитоскелета обеспечивает большую прочность межклеточных соединений, что особенно важно для клеточных пластов, подвергающихся механич. нагрузкам (напр., покровного эпителия или эндотелия артерий).
Контактные М. в. играют ключевую роль в процессах эмбрионального гистогенеза; во взрослом организме они важны прежде всего для поддержания тканевого гомеостаза. Присутствие на плазматич. мембране разл. белков адгезии и способность клеток регулировать их количество и активность позволяют им избирательно взаимодействовать с клетками определённых типов, перемещаться на поверхности внеклеточного матрикса или прикрепляться к нему. Интегрины и связанные с ними сигнальные молекулы участвуют в реализации феномена контактного ингибирования – торможения клеточного деления при контактах клеток между собой. В норме этот механизм обеспечивает контроль за численностью клеток в морфологич. структурах и органах. Его нарушение в раковых клетках обусловливает неограниченный рост опухолей. Межклеточная адгезия (слипание) тромбоцитов, обусловленная интегринами, лежит в основе ограничения кровотечения (гемостаза).
Гуморально-опосредованные М. в. обусловлены секрецией клетками химич. веществ – медиаторов, которые действуют на специфич. рецепторы клеток-мишеней, вызывая определённые реакции этих клеток. Медиаторы М. в. разделяют на близкодействующие и дальнодействующие. Близкодействующие медиаторы быстро утилизируются или разрушаются и воздействуют лишь на клетки ближайшего окружения. К ним относят нервные медиаторы, цитокины и ростовые факторы, т. е. медиаторы, обеспечивающие локальный контроль гистогенеза, кроветворения, иммунного ответа, а также нервную регуляцию физиологич. функций. Дальнодействующие медиаторы, гл. обр. гормоны, оказывают действие на клетки-мишени, отдалённые от клеток-продуцентов; они обеспечивают системную регуляцию функций организма и редко рассматриваются в контексте межклеточных взаимодействий.
К числу М. в., в которых сочетаются контактные и гуморальные механизмы, относятся взаимодействия, осуществляемые с помощью межклеточных синапсов. Классич. вариантом последних служат синапсы, которые образуют нервные клетки с клетками-мишенями. Их назначение состоит в обеспечении эффективности химич. сигнализации, в которой участвуют медиаторы, выделяемые нервной клеткой и влияющие на конкретную клетку-мишень. Наряду с нервными синапсами у высших животных образуются т. н. иммунные синапсы – врем. надмолекулярные структуры, формирующиеся при представлении антигена антигенпрезентирующими клетками Т-лимфоцитам. Их функция – оптимизировать распознавание антигена путём сосредоточения в зоне контакта необходимых рецепторных и сигнальных молекул.
Сочетание контактных и гуморально-опосредованных М. в. необходимо для обеспечения миграции клеток в организме, в частности выхода лейкоцитов из сосудистого русла в ткани, который постоянно происходит в норме и резко усиливается при воспалении. При этом контактные М. в., осуществляемые с участием селектинов и интегринов, необходимы для преодоления тканевых и сосудистых барьеров, а также для взаимодействия с внеклеточным матриксом. Направление движения клеток в очаг воспаления определяется разновидностью близкодействующих гуморальных факторов – хемоаттрактантов, которые образуются как патогенными микроорганизмами, так и клетками организма-хозяина. В органах кроветворения и лимфообразования (костный мозг, тимус и др.) межклеточные контакты, а также цитокины и пептидные факторы, выделяемые клетками стромы, поддерживают жизнеспособность, пролиферацию и дифференцировку развивающихся клеток крови. В иммунной системе М. в., осуществляемые с участием молекул адгезии и цитокинов, служат источником вспомогат. стимулов для дифференцировки клеток-эффекторов. Напр., Т-лимфоциты-хелперы оказывают «помощь» В-лимфоцитам, цитотоксич. Т-лимфоцитам и макрофагам в процессе иммунного ответа. Через М. в., как контактные, так и опосредованные гуморальными факторами, реализуется гомеостатич. контроль численности клеток иммунной системы.
Генетич. дефекты, приводящие к ослаблению экспрессии белков адгезии, обычно проявляются в нарушении развития в эмбриональном периоде и приводят к гибели плода. У человека описаны иммунодефициты, связанные с генетически обусловленным недостатком синтеза молекул адгезии. При этих заболеваниях нарушается поступление лейкоцитов в очаги бактериальной инфекции. Одной из причин повышенной кровоточивости у человека является генетич. дефект интегриновых рецепторов тромбоцитов: свёртывание крови замедляется, хотя количество тромбоцитов может оставаться неизменным. См. также Межклеточные соединения.
Источник
Воспаление в соединительной ткани. Процессы воспаления в соединительной ткани.
Рыхлая соединительная ткань — это система многих клеточных дифферонов, или гистогенетических рядов — дивергентных линий клеточной дифференцировки. Несмотря на большое разнообразие клеточных форм, все они составляют единую систему, выполняющую защитную и трофическую функции. Между кровью и соединительной тканью существуют тесные взаимосвязи и постоянный обмен клеточными элементами.
Структурно-функциональной единицей соединительной ткани считается гистион. Он включает участок микроциркуляторного русла с окружающими его клетками и межклеточными структурами. Рыхлая соединительная ткань находится в динамических взаимодействиях с другими тканями, в частности, с эпителиальными, ретикулярной, эндотелиальной, жировой, пигментной, плотными волокнистыми соединительными тканями.
Воспаление и регенерация. При действии повреждающих агентов (механических, химических, бактериальных и других) в рыхлой соединительной ткани развивается сложная сосудисто-тканевая защитно-приспособительная реакция — воспаление. При воспалении наблюдаются как общие, так и местные изменения. Местные проявления реакции организма в очаге воспаления включают несколько взаимосвязанных фаз: 1) альтерация (повреждение) тканей; 2) высвобождение физиологически активных веществ — так называемых медиаторов воспаления; 3) сосудистая реакция с экссудацией, включающая изменение кровотока в микроциркуляторном русле, повышение проницаемости сосудов; 4) резорбция продуктов распада тканей; 5) пролиферация клеток с образованием «грануляционной ткани» и последующей регенерацией тканей. Завершается воспаление образованием зрелой волокнистой соединительной ткани.
При описании воспаления обычно выделяют три фазы: лейкоцитарную, с преобладанием в очаге воспаления нейтрофильных гранулоцитов; макрофагическую, когда продукты распада активно резорбируются макрофагами; фибробластическую, на протяжении которой на месте повреждения разрастается соединительная ткань.
Лейкоцитарная фаза воспаления характеризуется передвижением нейтрофильных гранулоцитов в очаг распада ткани на месте ее повреждения. Пусковым механизмом воспаления является выброс медиаторов и цитокинов (гистамина, серотонина, лизосомных гидролаз и других биологически активных веществ). Источником выделения медиаторов являются тканевые базофилы (тучные клетки), лейкоциты, кровяные пластинки, макрофаги и лимфоциты. При этом развивается комплекс сосудистых изменений, включающий повышение проницаемости микроциркуляторного русла, экссудацию жидких составных частей плазмы, эмиграцию клеток крови. Уже через 6 ч от начала воспаления образуется лейкоцитарный инфильтрат. Нейтрофильные гранулоциты проявляют высокую фагоцитарную активность, поглощая главным образом микроорганизмы (отсюда их название — микрофаги). Часть нейтрофилов при этом распадается, выделяя большое количество лизосомных гидролаз. Это способствует очищению очага воспаления от поврежденных тканей.
Макрофагическая фаза воспаления протекает при явлениях активизации макрофагов как гематогенных (возникающих из моноцитов крови), так и гистиогенных (оседлых макрофагов — гистиоцитов). Макрофаги энергично фагоцитируют продукты тканевого распада. Вместе с тем они вырабатывают вещества — стимуляторы восстановительных процессов в очаге воспаления.
Фибробластическая фаза является завершающей фазой воспаления. Она характеризуется пролиферацией (размножением) клеток фибробластического ряда и их передвижением к воспалительному очагу. Поскольку к этому времени заканчивается в основном очищение места повреждения от продуктов тканевого распада, фибробласты заполняют бывший дефект ткани. Они интенсивно вырабатывают межклеточное вещество. При этом образуются вначале тонкие аргирофильные, а позднее и коллагеновые волокна. Вместе с клетками эти волокна отграничивают воспалительный очаг от неповрежденной ткани. Развитие фибробластов постепенно приводит к замещению воспалительного очага соединительной тканью. При значительном дефекте ткани на месте очага воспаления формируется рубец. При наличии инородного тела вокруг него образуется соединительнотканная капсула, отчетливо выраженная на 5-7-е сутки от начала воспаления. Относительно источников развития фибробластов в очаге повреждения существуют разные гипотезы. Так различают две субпопуляции фибробластов, имеющие разные источники и отличающиеся неодинаковой продолжительностью жизни (коротко- и долгоживущие фибробласты).
Фибробласты, которые развиваются из стволовых кроветворных клеток — это короткоживущая популяция фибробластов защитно-трофического типа, участвующая в процессах воспаления, заживления ран и т. д. Другие фибробласты происходят от стволовых стромальных клеток (механоцитов) костного мозга. Это популяция долгоживущих фибробластов опорного типа с преимущественно механическими функциями. Кроме того, существуют специализированные формы фибробластов — фиброкласты и миофибробласты, развивающиеся из адвентициальных клеток. Фиб-рокласты обеспечивают перестройку соединительной ткани путем разрушения межклеточного вещества. В цитоплазме клеток обнаруживается хорошо развитый аппарат лизиса коллагеновых фибрилл. Клетки выявляются преимущественно в области формирования рубцовой ткани после повреждения органов. Миофибробласты отличаются от фибробластов большим содержанием сократительных филаментов (актина гладкомышечного типа). Они также участвуют в регенерации путем контракции краев раны.
— Также рекомендуем «Ткани с опорно-механической функцией. Плотные волокнистые соединительные ткани.»
Оглавление темы «Костные ткани. Мышечные ткани.»:
1. Воспаление в соединительной ткани. Процессы воспаления в соединительной ткани.
2. Ткани с опорно-механической функцией. Плотные волокнистые соединительные ткани.
3. Костные ткани. Остеогистогенез.
4. Развитие костной ткани на месте хряща. Остеокласты. Пластинчатая костная ткань.
5. Ткани с двигательной функцией. Скелетная мышечная ткань. Гистогенез скелетной мышечной ткани.
6. Строение скелетной мышечной ткани. Регенерация скелетной мышечной ткани.
7. Сердечная мышечная ткань. Строение сердечной мышечной ткани.
8. Гладкая мышечная ткань. Строение гладкой мышечной ткани.
9. Мионевральная ткань. Миоидные клетки.
10. Ткани нервной системы. Гистогенез нервной системы.
Источник
Межклеточные взаимодействия — это взаимодействия клеток друг с другом.Могут быть как дистантными,на расстоянии, так и контактными.Дистантные взаимодействия осуществляются при помощи растворимых веществ, секретируемых клетками в окружающую их среду и воздействующих на другие клетки. Эти вещества называются медиаторами,или посредниками. В качестве медиаторов могут выступать гормоны, биогенные амины, антитела и многие другие биологически активные вещества, эти вещества воздействуют на репепторный аппарат клеток, с которыми взаимодействует выделившая медиатор клетка. Следовательно, дистантные межклеточные взаимодействия опосредуют действие на клетки гормонов, имеют место при иммунном ответе, эмбриональном развитии (эмбриональная индукция,см. эмбриологию) и при многих других важных клеточных реакциях.
Кроме того, в многоклеточном организме все клетки связаны между собой при помощи межклеточных контактов (контактные межклеточные взаимодействия). Контактные взаимодействия состоят из нескольких фаз и включают как начальный этап дистантные взаимодействия:
1. Узнавание одной клеткой другой клетки (может быть дистантным при посредстве медиаторов и контактным при посредстве рецепторов).
2. Установление между клетками непрочных связей.
3. Формирование устойчивых межклеточных контактов. Вторая и третья фазы осуществляются при помощи молекул клеточной адгезии.
Все межклеточные контакты делятся на три основных типа (рис. 3.15, 3.16):
1. Адгезионные контакты,которые механически соединяют клетки между собой. Основной тип адгезионных контактов — десмосомы. Бывают трех типов:
— точечные десмосомы (пятно десмосомы). Они скрепляют клетки в отдельных местах. При этом с внутренней стороны клеточных мембран двух
клеток находится электрошюплотная пластинка, связанная с сетью кератиновых микрофиламент. Эти филаменты заканчиваются в пластинке или проходят мдоль ее поверхности. Прилегающие друг к другу пластинки двух клеток соединены через межклеточное пространство волокнами из белка неизвестной природы. В межклеточном пространстве есть электронноплотный материал;
— опоясывающие десмосомы (зоны десмосомы). Они идут вблизи апи-кального конца клеток по их периметру в виде полосы. Эта полоса состоит из пучков актиновых филаментов, локализующихся со стороны цитоплазмы. В межклеточном пространстве есть электронноплотный материал;
— полудесмосомы. Представляют собой как бы половинку точечной десмосомы. Прикрепляют эпителиальные клетки к базальной мембране.
В функционировании адгезионных контактов важную роль играют адгезионные молекулы, такие, как Е-кадгерин, дссмоколлины, десмоглеины и др.
2. Плотные контакты.Это разновидность замыкающих контактов. Данный тип контактов не только механически связывает клетки друг с другом, но и препятствует прохождению между ними молекул. В плотных контактах клеточные мембраны подходят друг к другу на расстояние до 5 нм и связываются друг с другом при помощи специальных белков.
3. Проводящие контакты.В этих контактах может осуществляться передача малых молекул из одной клетки в другую. При этом мембраны двух клеток подходят друг к другу на расстояние до 3 нм и образуют каналы — коннексоны.Через коннексоны между клетками осуществляется свободный обмен низкомолекулярными веществами (электролитами, витаминами, нуклеотидами, АТФ, сахарами, аминокислотами и др.). Таким образом, этот тип контактов играет важную роль не только в механической, но и в химической коммуникации клеток. Пример таких контактов — щелевые контакты: нексусымежду мышечными клетками в гладкой и сердечной мускулатуре. При этом возбуждение передается с одной клетки на другую. Второй пример — синапсы— контакты между нервными клетками.
Кроме этих основных видов межклеточных контактов, выделяют также интердигитации— или межпальцевые соединения, когда цитоплазма с покрывающей ее цитолеммои одной клетки в виде пальца вклинивается в цитоплазму другой клетки и наоборот. Интердигитации резко увеличивают прочность межклеточных соединений, а кроме того, увеличивают площадь межклеточных взаимодействий, благодаря чему возрастает межклеточный обмен метаболитами.
Источник
Клеточные и субклеточные механизмы регуляции пролиферативных процессов при воспалении
Заключительная стадия воспаления связана с активированием пролиферации, которая включает взаимодействия, повышающие функциональную активность соединительной ткани. Ее клеточной основой являются фибробласты, а наиболее представленным гликопротеидом — фибронектин — димер с пептидными цепями молекулярной массой 22 кДа, соединенными дисульфидными мостиками.
Фибронектин опсонизирует объекты фагоцитоза, тем самым влияя на фагоцитарную активность макрофагов. Он продуцируется фибробластами и макрофагами. При тяжелых инфекционных процессах, генерализации воспаления, вплоть до возникновения септимеции, при которых практически все стадии воспалительного процесса приобретают исключительно патологический характер, отмечается снижение содержания этого соединения в крови. В этих условиях концентрация фибронектина в плазме может снижаться до 300 мкг/мл. В ходе репаративных процессов он выполняет роль первичной тканевой структуры, вокруг которой определенным образом ориентируются фибробласты и коллагеновые волокна.
При воспалении активированные макрофаги стимулируют пролиферацию фибробластов и способствуют их скоплению в очаге воспаления, активно влияя на ход синтеза ими коллагена. Выделяемый макрофагами фактор роста играет ключевую роль в индукции пролиферативных процессов. Однако следует заметить, что в начале пролиферативной стадии воспаления немаловажное значение имеет фактор пролиферации, синтезируемый тромбоцитами.
В зоне пролиферации паралелльно с фиброгенезом протекают процессы разрушения коллагеновых волокон. Сами фибробласты выделяют факторы, разрушающие коллаген за счет секреции коллагеназы. Фибробласты такого типа принято называть фиброкластами. Оптимальное соотношение различных клеточных элементов способствует нормальному протеканию заживления. Неоправданно высокая пролиферация приводит к образованию грубых рубцов, деформирующих орган.
Основой восстановления функциональных свойств ткани при завершении воспаления является размножение клеток паренхимы. Этот процесс происходит при межклеточном взаимодействии соединительной ткани и делящихся клеток органа [4]. Значительную роль в пространственной ориентации растущих паренхиматозных клеток органа принято отводить коллагену. Следует отметить, что описываемые в литературе механизмы влияния соединительной ткани на морфогенез имеют во многом гипотетический характер. В последнее десятилетие появились работы, в которых изучено влияние макрофагов на рост и дифференцировку паренхимы органа.
При этом показано, что макрофаги выделяют фактор-стимулятор пролиферации как стромальных, так и паренхиматозных элементов. Размножающиеся клетки паренхимы по механизму отрицательной обратной связи влияют на свойства макрофагов. Данное обстоятельство имеет важное значение в регуляции темпов и объема пролиферации. Делящиеся специализированные клетки органа выделяют факторы, разрушающие соединительную ткань, что препятствует рубцовой деформации органа. Благоприятным исходом пролиферативных процессов является восстановление структуры ткани без нарушения ее функции.
Это возможно только в том случае, если воспаление захватывает анатомические образования, специализированные клетки которого способны пролиферировать, и в ходе пролиферативной фазы воспаления наблюдаются процессы оптимального межклеточного взаимодействия. Воспалительный процесс в высокодифференцированной ткани всегда заканчивается ее замещением соединительной тканью с образованием рубца.
— Также рекомендуем «Превращение при воспалении защитных клеточных механизмов в патологические.»
Оглавление темы «Регуляция бронхиальной проходимости.»:
1. Клеточные и субклеточные механизмы регуляции пролиферативных процессов при воспалении
2. Превращение при воспалении защитных клеточных механизмов в патологические.
3. Системные медиаториые воздействия на клетку при воспалении.
4. Метаболиты арахидоновой кислоты в патогенезе воспаления легких и бронхов.
5. Легочный контроль за образованием и инактивацией эйкозаноидов.
6. Участие простагландинов в воспалительном процессе легких.
7. Аспириновая бронхиальная астма. Механизмы развития аспириновой астмы.
8. Кальций как регулятор бронхиальной проходимости.
9. Роль натрия и калия в регуляции бронхиальной проводимости.
10. Магний в регуляции бронхиальной проходимости.
Источник