Механизм действия глюкокортикоидов на воспаление

Механизм действия глюкокортикоидов на воспаление thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 декабря 2019;
проверки требуют 3 правки.

Биосинтез глюкокортикоидов

Глюкокортикоиды, или глюкокортикостероиды — стероидные гормоны из подкласса кортикостероидов, продуцируемые корой надпочечников. Основным и наиболее активным естественным глюкокортикоидом человека является кортизол, но это не всегда верно для других животных. Например, у крысы основным глюкокортикоидом является кортикостерон, а кортизола производится мало и он малоактивен для тканей организма крысы. У человека наоборот: кортикостерон производится в очень малых количествах и он малоактивен для тканей человеческого организма.

Классификация глюкокортикоидов[править | править код]

  • 11-Деоксикортизол → Кортизол → 5α-Дигидрокортизол1 → 3α,5α-Тетрагидрокортизол1
  • Кортизон → 5α-Дигидрокортизон1 → 3α,5α-Тетрагидрокортизон1
  • 5α-Дигидродеоксикортизол1 → 3α,5α-Тетрагидродеоксикортизол1

Физиологическая роль[править | править код]

Глюкокортикоиды обладают разносторонним действием на организм.

Влияние на кроветворение[править | править код]

Глюкокортикоиды тормозят синтез гемопоэтических факторов – IL-4 и гранулоцитарно-макрофагального колониестимулирующего фактора (GM-CSF), которые необходимы для процесса деления стволовых клеток костного мозга. Поэтому на фоне введения глюкокортикоидов в крови снижается уровень лимфоцитов, моноцитов, базофилов, эозинофилов. В то же время образование нейтрофилов в костном мозге и их концентрация в крови возрастает. После однократного введения глюкокортикоидов этот эффект достигает максимального значения к 6-му часу и уменьшается к концу суток.

Антистрессовое и противошоковое действие[править | править код]

Глюкокортикоиды оказывают мощное антистрессовое, противошоковое действие. Их уровень в крови резко повышается при стрессе, травмах, кровопотерях, шоковых состояниях. Повышение их уровня при этих состояниях является одним из механизмов адаптации организма к стрессу, кровопотере, борьбы с шоком и последствиями травмы. Глюкокортикоиды повышают системное артериальное давление, повышают чувствительность миокарда и стенок сосудов к катехоламинам, предотвращают десенситизацию рецепторов к катехоламинам при их высоком уровне.

Влияние на обмен веществ[править | править код]

Глюкокортикоиды повышают уровень глюкозы в крови, увеличивают глюконеогенез из аминокислот в печени, тормозят захват и утилизацию глюкозы клетками периферических тканей, угнетают активность ключевых ферментов гликолиза, повышают синтез гликогена в печени и скелетных мышцах, усиливают катаболизм белков и уменьшают их синтез, повышают анаболизм жиров в подкожной жировой клетчатке и других тканях.

Кроме того, глюкокортикоиды оказывают также определённое минералокортикоидное действие — способствуют задержке катиона натрия, аниона хлора и воды, усилению выведения катионов калия и кальция.

Взаимоотношения с другими гормонами[править | править код]

Понижают секрецию печенью соматомедина и инсулиноподобных факторов роста в ответ на соматотропин, понижают чувствительность периферических тканей к соматомедину и соматотропину, тем самым тормозя анаболические процессы и линейный рост. Также глюкокортикоиды понижают чувствительность тканей к гормонам щитовидной железы и половым гормонам.

Глюкокортикоиды являются мощными контринсулярными гормонами: они понижают чувствительность тканей к инсулину. Повышение секреции глюкокортикоидов в ответ на гипогликемию или в ответ на гиперинсулинемию при нормальном уровне глюкозы крови является одним из физиологических механизмов быстрой коррекции гипогликемии или предотвращения гипогликемии при гиперинсулинемии.

Иммунорегулирующее действие[править | править код]

Глюкокортикоиды обладают мощным иммунорегулирующим действием. Они угнетают активность клеток лимфоидного ряда, тормозят созревание и дифференцировку как Т-, так и B-субпопуляций лимфоцитов, вызывают апоптоз лимфоидных клеток и тем самым снижают количество лимфоцитов в крови. Глюкокортикоиды также тормозят продукцию антител B-лимфоцитами и плазматическими клетками, уменьшают продукцию лимфокинов и цитокинов разными иммунокомпетентными клетками, угнетают фагоцитарную активность лейкоцитов.

Вместе с тем эффекты глюкокортикоидов на иммунную систему неоднозначны. Проявление иммуностимулирующего или иммуносупрессивного эффекта зависит от концентрации глюкокортикоидного гормона в крови. Дело в том, что субпопуляция T-супрессоров значительно более чувствительна к угнетающему воздействию низких концентраций глюкокортикоидов, чем субпопуляции T-хелперов и T-киллеров, а также B-клетки. Таким образом, в сравнительно низких концентрациях глюкокортикоиды оказывают скорее иммуностимулирующее действие, сдвигая соотношение T-хелпер/Т-супрессор в сторону преобладания Т-хелперной активности. В более высоких концентрациях глюкокортикоиды оказывают иммуносупрессивное действие, причём интенсивность иммуносупрессии прямо пропорциональна концентрации в крови и растёт практически линейно вплоть до уровней, в 100 раз превышающих физиологические.

Глюкокортикоиды усиливают нейтрофилопоэз и повышают содержание нейтрофильных гранулоцитов в крови. Они также усиливают ответ нейтрофильного ростка костного мозга на ростовые факторы G-CSF и GM-CSF и на интерлейкины, уменьшают повреждающее действие лучевой и химиотерапии злокачественных опухолей на костный мозг и степень вызываемой этими воздействиями нейтропении. Благодаря этому эффекту глюкокортикоиды широко применяются в медицине при нейтропениях, вызванных химиотерапией и радиотерапией, и при лейкозах и лимфопролиферативных заболеваниях.

Читайте также:  Полоскание десен при воспалении травками

Глюкокортикоиды угнетают эозинофилопоэз и вызывают апоптоз зрелых эозинофилов крови, и тем самым снижают содержание эозинофилов в крови вплоть до полной анэозинопатии (отсутствия в пробе крови эозинофильных лейкоцитов).

Противовоспалительная активность[править | править код]

Глюкокортикоиды обладают свойством существенно уменьшать воспаление. Они тормозят активность различных разрушающих ткани ферментов — протеаз и нуклеаз, матриксных металлопротеиназ, гиалуронидазы, фосфолипазу А2 и другие, тормозят синтез простагландинов, кининов, лейкотриенов и других медиаторов воспаления из арахидоновой кислоты. Они также понижают проницаемость тканевых барьеров и стенок сосудов, тормозят экссудацию в очаг воспаления жидкости и белка, миграцию лейкоцитов в очаг (хемотаксис) и пролиферацию соединительной ткани в очаге, стабилизируют клеточные мембраны, тормозят перекисное окисление липидов, образование в очаге воспаления свободных радикалов и многие другие процессы, играющие роль в осуществлении воспаления.

Один из механизмов такого действия связан с индуцированием выделения белков, ингибирующих фосфолипазу A2 и известных под общим названием «липокортины». Эти белки, как предполагается, контролируют биосинтез таких сильнодействующих медиаторов воспаления, как простагландины и лейкотриены, путём торможения высвобождения их общего предшественника — арахидоновой кислоты. Арахидоновая кислота выделяется из мембранных фосфолипидов под действием фосфолипазы A2.

Антиаллергическое действие[править | править код]

Глюкокортикоиды уменьшают аллергию. Механизмы этого их свойства могут быть обусловлены понижением выработки IgE-иммуноглобулинов, повышением гистамин-связывающей (гистаминопексической) способности крови, стабилизацией мембран тучных клеток и уменьшением высвобождения из них медиаторов аллергии, понижением чувствительности периферических тканей к гистамину и серотонину с одновременным повышением чувствительности к адреналину и пр.

Антагонисты глюкокортикоидов[править | править код]

В настоящее время не существует клинически применимого антагониста глюкокортикоидных эффектов, поскольку увеличение секреции АКТГ быстро преодолевает действие блокады этих эффектов за счет повышения секреции кортизола надпочечниками. Однако некоторые стероиды проявляют частичную или тканезависимую способность к конкурентному торможению действия кортизола и родственных глюкокортикоидов.

Большинство глюкокортикоидов обладает аксиальной 11гидроксильной группой, которая может играть важную роль в связывании и активации рецептора. Такие стероиды, как кортизон и кортексолон (11дезоксикортизол или соединение S) и производные прогестерона, связываются с глюкокортикоидными рецепторами, но практически не обладают собственной глюкокортикоидной биологической активностью.

Эти соединения могут действовать как частичные агонисты или антагонисты, особенно in vitro, когда они не метаболизируются дальше в глюкокортикоиды.

In vivo последний процесс может препятствовать проявлению полного антиглюкокортикоидного действия таких стероидов, за исключением неметаболизируемых соединений, таких, как ципротеронацетат и позднее полученные антагонисты.
«Эндокринология и метаболизм», Ф.Фелиг, Д.Бакстер

Побочные действия глюкокортикоидов[править | править код]

Глюкокортикоиды, применяемые местно, в отличие от принимаемых пероральных, внутримышечных и внутривенных, обладают значительно меньшими побочными действиями на организм. Длительный прием приводит к появлению тяжелых побочных действий (снижение иммунитета, остеопороз, гипергликемия, изъязвление слизистой оболочки желудка, нарушение минерального и белкового обменов, психические нарушения, перераспределение жировой ткани, глаукома, катаракта, задержка физического и психического развития у детей и др.).

Ссылки[править | править код]

  • Инна Цветкова, Риски при лечении глюкокортикоидами — WebMedInfo.ru [неавторитетный источник?]
  • Фармакологическая группа — Глюкокортикоиды. Энциклопедия лекарств и товаров аптечного ассортимента. РЛС Патент. — Инструкция, применение и формула.
  • Безопасность глюкокортикостероидов в условиях инъекционной фармакотерапии хронических болей в спине

Отставнов Максим —Фармакология под ред. Р.Н. Аляутдина

Стероидные гормоны (эндогенные)

Гепатостероиды
(печень)
(С-30: Ланостаны)
  • Ланостерол
(С-27: Холестаны)
  • Зимостерол → 7-Дегидродесмостерол → Десмостерол → Холестерин
Жёлчные кислоты
(С-24: Холаны)
  • Холевая кислота • Хенодезоксихолевая кислота • ‎Дезоксихолевая кислота •‎ Литохолевая кислота • ‎Гликохолевая кислота •‎ Гликохенодезоксихолевая кислота • ‎Таурохолевая кислота •‎ Таурохенодезоксихолевая кислота
Гонадостероиды
(гонады)
Гестогены
(С-21: Прегнаны)
  • 17α-AC: Эпипрегненолон → Эпипрогестерон → Эпиаллопрегнандион → Эпиаллопрегнанолон
  • 17-AC: 17-Прегненолон → 17-Прогестерон → 17-Аллопрегнандион → 17-Аллопрегнанолон
  • 17β-AC: Прегненолон → Прогестерон → Аллопрегнандион → Аллопрегнанолон
Андрогены
(С-19: Андростаны)
  • 17α-ОН: Эпиандростендиол → Эпитестостерон → 5α-Дигидроэпитестостерон → Эпиандростандиол
  • 17-О: Дегидроэпиандростерон → Андростендион → Андростандион → Андростерон
  • 17β-ОН: Андростендиол → Тестостерон → 5α-Дигидротестостерон → Андростандиол
Эстрогены
(С-18: Эстраны)
  • 17α-ОН: Эпиэстрадиол → Эпиэстриол → Эпиэстетрол
  • 17-О: Эстрон → Эстрадиолон → Эстриолон
  • 17β-ОН: Эстрадиол → Эстриол → Эстетрол
Адреностероиды
(надпочечники)
Глумеростероиды
(С-21: Прегнаны)
Минералокортикоиды

11-Деоксикортикостерон → Кортикостерон → 5α-Дигидрокортикостерон → 3α,5α-Тетрагидрокортикостерон
Альдостерон → 5α-Дигидроальдостерон → 3α,5α-Тетрагидроальдостерон
5α-Дигидродеоксикортикостерон → 3α,5α-Тетрагидродеоксикортикостерон
Глюкокортикоиды
11-Деоксикортизол → Кортизол → 5α-Дигидрокортизол → 3α,5α-Тетрагидрокортизол
Кортизон → 5α-Дигидрокортизон → 3α,5α-Тетрагидрокортизон
5α-Дигидродеоксикортизол → 3α,5α-Тетрагидродеоксикортизол

Фасцилостероиды
(С-19: Андростаны)
11α-гидрокси

17α-ОН: 11α-гидроксиэпиандростендиол → 11α-гидроксиэпитестостерон → 5α-дигидро-11α-гидроксиэпитестостерон → 11α-гидроксиэпиандростандиол
17-О: 11α-гидроксидегидроэпиандростерон → 11α-гидроксиандростендион → 11α-гидроксиандростандион → 11α-гидроксиандростерон
17β-ОН: 11α-гидроксиандростендиол → 11α-гидрокситестостерон → 5α-дигидро-11α-гидрокситестостерон → 11α-гидроксиандростандиол
11-кето

17α-ОН: 11-кетоэпиандростендиол → 11-кетоэпитестостерон → 5α-дигидро-11-кетоэпитестостерон → 11-кетоэпиандростандиол
17-О: 11-кетодегидроэпиандростерон → 11-кетоандростендион → 11-кетоандростандион → 11-кетоандростерон
17β-ОН: 11-кетоандростендиол → 11-кетотестостерон → 5α-дигидро-11-кетотестостерон → 11-кетоандростандиол
11β-гидрокси

17α-ОН: 11β-гидроксиэпиандростендиол → 11β-гидроксиэпитестостерон → 5α-дигидро-11β-гидроксиэпитестостерон → 11β-гидроксиэпиандростандиол
17-О: 11β-гидроксидегидроэпиандростерон → 11β-гидроксиандростендион → 11β-гидроксиандростандион → 11β-гидроксиандростерон
17β-ОН: 11β-гидроксиандростендиол → 11β-гидрокситестостерон → 5α-дигидро-11β-гидрокситестостерон → 11β-гидроксиандростандиол

Ретикулостероиды
(С-18: Эстраны)
Катехол-эстрогены
17α-ОН: 2-Гидроксиэпиэстрадиол и 4-Гидроксиэпиэстрадиол
17-О: 2-Гидроксиэстрон и 4-Гидроксиэстрон
17β-ОН: 2-Гидроксиэстрадиол и 4-Гидроксиэстрадиол
Квинон-эстрогены
17α-ОН: 2,3-Квинонэпиэстрадиол и 4,3-Квинонэпиэстрадиол
17-О: 2,3-Квинонэстрон и 4,3-Квинонэстрон
17β-ОН: 2,3-Квинонэстрадиол и 4,3-Квинонэстрадиол
Медуллостероиды
2,3-ОН
Допа → Дофамин → Норадреналин → Адреналин
3-ОН
Триптофан → 5-гидрокситриптофан → Серотонин → N-ацетил-5-гидрокситриптамин → Мелатонин
3,4-ОН
Допа → Дофамин → Норадреналин → Адреналин

Источник

Противовоспалительный эффект глюкокортикоидных гормонов.

К числу основных механизмов противовоспалительного действия глюкокортикостероидов можно отнести их влияние на количество и активность клеток, участвующих в реализации воспаления в бронхах и легких, причем это влияние их весьма разнообразно. Так, показано, что кортикостероиды снижают количество циркулирующих в крови базофилов, эозинофилов, моноцитов и лимфоцитов. Отчасти этот эффект связан с угнетением факторов ингибирующих гранулоцитопоэз, таких как гранулоциты — макрофаги колониестимулирующий фактор (ГМКСФ).

Кроме того, кортикостероиды стимулируют выход эозинофилов и, возможно, лимфоцитов из кровяного русла и депо в периферические ткани, в том числе и в бронхо-легочную, приводя, таким образом, к уменьшению их количества в крови. В связи с этим эозинопенический и лимфопенический эффекты глюкокортикоидов в последнее время связывают, в основном, не с разрушением клеток в крови, а их перераспределением в тканях организма.

Количество тучных клеток в слизистой бронхов вторично уменьшается под влиянием глюкокортикоидов, что связывают с ингибицией ими высвобождения факторов роста тучной клетки, таких как интерлейкин-3 и ГМКСФ.

В дальнейшем под влиянием глюкокортикоидов угнетается выход большинства лейкоцитов из сосудистого русла в периферические ткани и органы вследствие ингибиции высвобождения хемоаттрактантов и цитокинов, активирующих эндотелий сосудов, таких как интерлейкин-1, фактор, некротизирующий опухоли. В то же время глюкокортикоиды стимулируют синтез неитрофилов в костном мозге, что приводит к увеличению содержания неитрофилов в периферической крови.

глюкокортикоиды и воспаление

Кроме того, глюкокортикоиды действуют не только на подвижность лейкоцитов, но и также на различные их функции. Установлено, что они повышают синтез адренорецепторов, вследствие чего усиливается адренергический ответ, активизируется аденилатциклаза, усиливается синтез ц-АМФ. Глюкокортикоиды также ингибируют дегрануляцию макрофагов, базофилов и тучных клеток, что доказано пока в экспериментах на животных.

Во всяком случае, показано снижение количества рецепторов комплемента и активности моноцитов человека под влиянием глюкокортикоидов. Они уменьшают также пролиферацию Т-лимфоцитов, снижают их активность за счет угнетения продукции интерлейкина-2.

В последние годы установлено, что глюкокортикоиды уменьшают количество и снижают активность дендритных клеток в слизистой бронхов, что угнетает активность воспаления в ответ на такие стимулы, как аллерген.

На субклеточном и молекулярном уровне механизм действия глюкокортикоидов объясняется их влиянием на генетический аппарат клетки. Считается, что вследствие своей липофильности стероиды свободно проходят через клеточную мембрану и проникают внутрь клетки, где связываются с цитоплазматическими глюкокортикоидными рецепторами. Далее комплекс глюкокортикоид-рецептор проникает в ядро клетки, в котором он действует как фактор транскрипции, связываясь со специфичными, чувствительными к нему областями ДНК. Это взаимодействие приводит к активации или угнетению гена-мишени. В результате этого взаимодействия уменьшается или увеличивается синтез матричной РНК (м-РНК), что, в свою очередь, приводит к повышению продукции некоторых медиаторов, ферментов и других белков, включая липокортин-1, эндонуклеазы, нейтральную эндопептидазу, адренорецепторы и к снижению продукции других медиаторов, прежде всего, цитокинов.

В настоящее время установлено, что цитокины играют ведущую роль в формировании и прогрессировании воспалительного процесса при острых и хронических неспецифических заболеваниях легких, таких как бронхиальная астма и хроническая обструктивная болезнь легких. Поэтому активно ведется поиск новых путей терапии, основанной на воздействии на цитокины. Однако пока не удалось создать специфические цитокин-ингибиторы, которые оказались бы в лечении воспаления более эффективными, чем глюкокортикоиды.

В последние годы были обнаружены новые механизмы взаимодействия глюкокортикоидов с цитокинами. Известно, что цитокины действуют на клетки путем, изменения транскрипции генов. Их взаимодействие с рецепторами на поверхности клетки приводит к активации факторов транскрипции, таких, как активатор протеина-1 (АП-1) и ядерный фактор каппа-В (ЯФкБ). Эти факторы затем направляются в ядро клетки, где связываются с ДНК (в принципе, таким же путем, как и комплекс глюкокортикоид-рецептор) и влияют, таким образом, на синтез м-РНК и продукцию провоспалительных протеинов (цитокинов) в клетке. Оказалось, что комплекс глюкокортикоид-рецептор может взаимодействовать непосредственно как с АП-1, так и с ЯФкБ в ядре, предупреждая, таким образом, их действие как фактор транскрипции ДНК и эффективно блокируя влияние цитокинов на клетку.

Это протеин — протеиновое взаимодействие — более достоверно, по мнению некоторых авторов, объясняет очень важный механизм противовоспалительного действия глюкокортикоидов. Поскольку ЯФкБ и АП-1 опосредуют хронизацию воспалительных эффектов, их инактивация приводит к угнетению этого процесса.

Недавно было также показано, что дексаметазон стимулирует продукцию 1 каппа-Б-альфа, белка, который связывается с ЯФкБ в цитоплазме и предупреждает его транслокацию в ядро клетки. Угнетение транслокации ЯФкБ также ведет к редукции высвобождения цитокинов и к уменьшению выраженности воспалительной реакции.

Кроме цитокинов, важная роль в формировании воспалительного процесса в бронхо-легочном аппарате, при таких заболеваниях, как бронхиальная астма и хронический обструктивный бронхит, отводится эйкозаноидам, которые синтезируются из мембранных фосфолипидов путем активации каскада энзимов, известных как каскад арахидоновой кислоты. К эйкозаноидам относятся такие биологически активные вещества, как лейкотриены, простагландины, тромбоксан и липоксины. Лейкотриены относятся к числу наиболее мощных воспалительных медиаторов, участвующих в патогенезе различных заболеваний бронхов и легких. Известно, что глюкокортикоиды ингибируют высвобождение лейкотриенов из клеток воспаления. Механизм их действия объясняют стимуляцией синтеза белка липокортина-1, который блокирует фермент фосфолипазу А2, «запускающий» метаболизм арахидоновой кислоты.

Оказалось также, что глюкокортикоиды уменьшают продукцию окиси азота, одного из агрессивных факторов воспаления, который обнаруживается в выдыхаемом воздухе при заболеваниях верхних и нижних дыхательных путей. Окись азота образуется из L-аргинина базальными эпителиальными клетками под влиянием индуцируемой нитро-оксид-синтазы. Глюкокортикоиды ингибируют активность этого фермента за счет блокады цитокинов (интерлейкина-1-бета и фактора, некротизирующего опухоль-альфа), которые индуцируют экспрессию нитро-оксид-синтазы.

Таким образом, глюкокортикоиды обладают мощным ингибирующим эффектом на воспалительный процесс благодаря широте и многоообра-зию механизмов действия на клеточном, субклеточном и молекулярном уровнях.

Поэтому дефицит эндогенного кортизола, появляющийся у больных, особенно с затяжными или хроническими формами воспаления в бронхах и легких, способствует развитию и прогрессированию воспалительного процесса. Механизмы развития глюкокортикоидной недостаточности могут быть различными, связанными как с нарушением функции надпочечников, так и с вненадпочечниковыми факторами.

— Вернуться в оглавление раздела «Пульмонология.»

Оглавление темы «Роль гормонов и биологически активных веществ в воспалении бронхов.»:

1. Результаты бронхоальвеолярного лаважа при бронхиальной астме.

2. Варианты эозинофильного воспаления при бронхиальной астме.

3. Эозинофильное воспаление при других легочных заболеваниях.

4. Неэозинофильные варианты воспаления бронхов у больных бронхиальной астмой.

5. Калликреин-кининовая система при бронхиальной астме.

6. Разнообразие моделей воспаления при болезнях легких.

7. Нарушение гормонального фона и его роль в развитии воспаления.

8. Гормоны мозгового слоя надпочечников. Роль катехоламинов в развитии воспалительного процесса.

9. Глюкокортикоиды. Продукция глюкокортикоидных гормонов. Роль глюкокортикоидов в метаболических процессах.

10. Противовоспалительный эффект глюкокортикоидных гормонов.

Источник