Клетки в очаге воспаления
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 августа 2017;
проверки требуют 22 правки.
Воспале́ние (лат. inflammatio) — это комплексный, местный и общий патологический процесс, возникающий в ответ на повреждение (alteratio) или действие патогенного раздражителя и проявляющийся в реакциях, направленных на устранение продуктов, а если возможно, то и агентов повреждения (exudatio и др.) и приводящий к максимальному восстановлению в зоне повреждения (proliferatio).
Воспаление — защитно-приспособительный процесс.
Воспаление свойственно человеку и животным, в том числе низшим животным и одноклеточным организмам в упрощённом виде[1]. Механизм воспаления является общим для всех организмов, независимо от локализации, вида раздражителя и индивидуальных особенностей организма.
История[править | править код]
Уже в древние времена внешние признаки воспаления описал римский философ и врач Авл Корнелий Цельс (ок. 25 до н. э. — ок. 50 н. э.):
- лат. rubor — краснота (местное покраснение кожных покровов или слизистой).
- tumor — опухоль (отёк).
- calor — жар (повышение местной температуры).
- dolor — боль.
Дополнил Гален (129 — ок. 200 гг. н. э.), добавив - functio laesa — нарушение функции.
В конце XIX столетия И. И. Мечников считал, что воспаление — это приспособительная и выработанная в ходе эволюции реакция организма и одним из важнейших её проявлений служит фагоцитоз микрофагами и макрофагами патогенных агентов и обеспечение таким образом выздоровления организма. Но репаративная функция воспаления была для И. И. Мечникова сокрыта. Подчеркивая защитный характер воспаления, он в то же время полагал, что целительная сила природы, которую и представляет собой воспалительная реакция, не есть еще приспособление, достигшее совершенства. По мнению И. И. Мечникова, доказательством этого являются частые болезни, сопровождающиеся воспалением, и случаи смерти от них[2].
Большой вклад в изучение воспаления внесли Джон Хантер (1728—1794), Франсуа Бруссе (1772—1838), Фридрих Густав Якоб Генле (1809—1885), Симон Самуэль (1833—1899), Юлиус Фридрих Конхайм (1839—1884), Алексей Сергеевич Шкляревский, (1839—1906), Рудольф Вирхов (1821—1902), Пауль Эрлих (1854—1915), Илья Ильич Мечников (1845—1916).
Этиология[править | править код]
Патогенные раздражители (повреждающие факторы) по своей природе могут быть:
- Физическим — травма (механическое повреждение целостности ткани), отморожение, термический ожог.
- Химическими — щелочи, кислоты (соляная кислота желудка), эфирные масла, раздражающие и токсические вещества (алкоголь (спирты) и некоторые лекарственные препараты[3], см. Токсические гепатиты).
- Биологическими — возбудители инфекционных заболеваний: животные паразиты, бактерии, вирусы, продукты их жизнедеятельности (экзо- и эндотоксины). Многие возбудители вызывают специфические воспаления, характерные только для определённого вида инфекции (туберкулёз, лепра, сифилис). К биологическим повреждающим факторам также относят иммунные комплексы, состоящие из антигена, антитела и комплемента, вызывающие иммунное воспаление (аллергия, аутоимунный тиреодит, ревматоидный артрит, системный васкулит).
Клиника и патогенез[править | править код]
Клинические симптомы воспаления:
- Покраснение (гиперемия).
- Местное повышение температуры (гипертермия).
- Отёк (ацидоз способствует диссоциации солей и распаду белков, что приводит к повышению осмотического и онкотического давления в повреждённых тканях, приводящему к отёкам).
- Боль.
- Нарушение функции.
Процесс воспаления делят на три основных стадии:
- Альтерация — повреждение клеток и тканей.
- Экссудация — выход жидкости и клеток крови из сосудов в ткани и органы.
- Пролиферация (или продуктивная стадия) — размножение клеток и разрастание ткани, в результате чего и происходит восстановление целостности ткани (репарация).
Альтерация[править | править код]
Альтерация (позднелат. alteratio, изменение[4]) — стадия начала воспаления. Патогенный раздражитель, воздействуя на ткани организма, вызывает первичную альтерацию — повреждение и последующий некроз клеток. Из лизосом погибших клеток (в том числе гранулоцитов) высвобождаются многочисленные ферменты (влияющие на белки и пептиды, липиды, углеводы, нуклеиновые кислоты), которые изменяют структуру и нарушают нормальный обмен веществ окружающей очаг воспаления соединительной ткани и сосудов (вторичная альтерация).
В зоне первичной альтерации интенсивность метаболизма снижена, так как функции клеток нарушены, а в зоне вторичной альтерации повышена, в основном за счёт обмена углеводов (в том числе гликолиза полисахаридов). Повышается потребление кислорода и выделение углекислоты, однако потребление кислорода превышает выделение углекислоты, так как окисление не всегда проходит до окончательного образования углекислого газа (нарушение цикла Кребса). Это приводит к накоплению в зоне воспаления недоокисленных продуктов обмена, имеющих кислую реакцию: молочной, пировиноградной, L-кетоглутаровой и др. кислот. Нормальный уровень кислотности ткани с pH 7,32—7,45 может повышаться до уровня 6,5—5,39 (при остром гнойном воспалении), возникает ацидоз[5].
На месте повреждения расширяются сосуды, вследствие чего увеличивается кровоснабжение, происходит замедление кровотока и как следствие — покраснение, местное повышение температуры, затем увеличение проницаемости стенки капилляров ведёт к выходу лейкоцитов, макрофагов и жидкой части крови (плазмы) в место повреждения — отёк, который в свою очередь сдавливая нервные окончания вызывает боль и всё вместе — нарушение функции. Воспаление регулируют медиаторы воспаления — гистамин, серотонин, непосредственное участие принимают цитокины — брадикинин, калликреин (см. Кинин-калликреиновая система), IL-1 и TNF, система свёртывания крови — фибрин, фактор Хагемана, система комплемента, клетки крови — лейкоциты, лимфоциты (Т и В) и макрофаги. В повреждённой ткани усиливаются процессы образования свободных радикалов.
Механизмы возникновения воспаления[править | править код]
Митохондриально-зависимый механизм[править | править код]
Из-за повреждения клеток при травме, митохондриальные белки и мтДНК попадают в кровоток. Далее эти митохондриальные молекулярные фрагменты (DAMPs) распознаются Толл-подобными (TLRs) и NLR рецепторами. Основным NLR-рецептором участвующим в процессе является рецептор NLRP3. В нормальном состоянии белки NLRP3 и ASC (цитозольный адаптерный белок) связаны с ЭПР, при этом белок NLRP3 находится комплексе с белком TXNIP. Активация рецепторов приводит к их перемещению в перинуклеарное пространство, где под действием активных форм кислорода, вырабатываемых поврежденными митохондриями, белок NLRP3 высвобождается из комплекса.[6] Он вызывает олигомеризацию белка NLRP3 и связывание ASC и прокаспазы-1, образуя формирование белкового комплекса называемого NLRP3 инфламмасомой. Инфламмасома вызывает созревание провоспалительных цитокинов, таких как IL-18 и IL-1beta и активирует каспазу-1. (3) Провоспалительные цитокины также могут запускать NF-kB пути воспаления, повышая длительность и уровень воспаления. Также для активации NLRP3 инфламмасомы необходима пониженная внутриклеточная концентрация K+, что обеспечивание калиевыми каналами митохондрий.
Механизм возникновения воспаления через NF-κB сигнальный путь[править | править код]
Классификация[править | править код]
По продолжительности:
- Острое воспаление — длится несколько минут или часов.
- Подострое — несколько дней или недель.
- Хроническое — длится от нескольких месяцев до пожизненного с моментами ремиссии и обострения.
По выраженности реакции организма:
- Нормоэргическое воспаление — адекватная реакция организма, соответствующая характеру и силе воздействия патогенного раздражителя.
- Гиперэргическое — значительно повышенная реакция.
- Гипоэргическое (от гипоэргия[4]) и аноэргическое — слабая или отсутствующая реакция (у пожилых людей (старше 60-ти), при недостаточном питании и авитаминозе[7], у ослабленных и истощённых людей).
По локализации:
- Местное воспаление — распространяется на ограниченный участок ткани или какой-либо орган.
- Системное — распространяется на какую-либо систему организма (систему соединительной ткани (ревматизм), сосудистую систему (системный васкулит)[7]).
Формы воспаления[править | править код]
- Альтеративное воспаление (в настоящее время отвергается)
- Экссудативное воспаление
- Серозное
- Фибринозное
- Дифтеритическое
- Крупозное
- Гнойное
- Гнилостное
- Геморрагическое
- Катаральное — с обильным выделением слизи или мокроты.
- Смешанное
- Пролиферативное воспаление
- Гранулематозное воспаление
- Межуточное (интерстициальное) воспаление
- Воспаление с образованием полипов и остроконечных кондилом
- Воспаление вокруг животных-паразитов и инородных тел (холангит, урертрит, киста)
- Специфическое воспаление — развивается при таких заболеваниях как туберкулёз, сифилис, лепра, сап, склерома[8].
Диагностика[править | править код]
Клинический анализ крови: увеличивается скорость оседания эритроцитов (СОЭ), лейкоцитоз, изменяется лейкоцитарная формула.
Биохимический анализ крови: при остром воспалении повышается количество C-реактивного белка (белок острой фазы), α- и β-глобулинов, при хроническом воспалении — γ-глобулинов; снижается содержание альбуминов[9].
Терминология[править | править код]
Термины воспалений чаще всего являются латинскими существительными третьего склонения греческого происхождения, состоящие из корневого терминоэлемента, обозначающего название органа, и суффикса -ītis (-ит). Примеры: gaster (греч. желудок) + -ītis = gastrītis (гастрит — воспаление слизистой желудка); nephros (греч. почка) + -ītis = nephrītis (нефрит)[10].
Исключения составляют устоявшиеся старые названия воспалительных заболеваний: пневмония (греч. pneumon, лёгкое), ангина — воспаление миндалин, панариций — воспаление ногтевого ложа пальца и др[1].
См. также[править | править код]
- Гомеостаз
- Инфламмасома
Примечания[править | править код]
- ↑ 1 2 Пауков, Хитров, 1989, с. 98.
- ↑ А.И. Струков, В.В. Серов. Патологическая Анатомия. — 5-е издание. — 2010. — С. 169. — 848 с. — ISBN 978-5-904090-63-0.
- ↑ Серов, Пауков, 1995, с. 506.
- ↑ 1 2 Советский энциклопедический словарь / Гл. ред. А.М. Прохоров. — 4-е изд. — М.: Советская энциклопедия, 1988. — 1600 с.
- ↑ Тель, Лысенков, 2007.
- ↑ Mitochondria: Sovereign of inflammation?.
- ↑ 1 2 Барышников, 2002, с. 58.
- ↑ Пауков, Хитров, 1989, с. 106—112.
- ↑ Пауков, Хитров, 1989, с. 105.
- ↑ Городкова Ю.И. Латинский язык. — М.: Кнорус, 2015. — С. 124—125. — 256 с.
Литература[править | править код]
- Пальцев М. А., Аничков Н. М. Патологическая анатомия. Учебник для медицинских вузов (В 2 т.). — М.: Медицина, 2001 (1-е изд.), 2005 (2-е изд.), 2007 (3-е изд.).
- Пауков В.С., Хитров Н.К. Патология. — Учебник для мед. училищ. — М.: Медицина, 1989. — С. 98—112. — 352 с.
- Тель Л.З., Лысенков С.П., Шарипова Н.Г., Шастун С.А. Патофизиология и физиология в вопросах и ответах. — 2 том. — М.: Медицинское информационное агентство, 2007. — С. 66—75. — 512 с.
- Воспаление. Руководство для врачей / Под ред. В.В. Серова, В.С. Паукова. — М.: Медицина, 1995. — 640 с.
- Барышников С.Д. Лекции по анатомии и физиологии человека с основами патологии. — М.: ГОУ ВУНМЦ, 2002. — С. 57—64. — 416 с.
- Атаман А.В. Патологическая физиология в вопросах и ответах. — Учеб. пособие. — К.: Вища школа, 2000. — С. 133—147. — 608 с.
Видео[править | править код]
- «Воспаление» — Центрнаучфильм (Объединение учебных фильмов), 1980 г.
Ссылки[править | править код]
- Воспаление и иммунитет // ImmunInfo.ru
Источник
Главная
Случайная страница
Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать неотразимый комплимент
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
Макрофаги.Образуются из моноцитов в тканях. Участвуют в фагоцитозе. Синтезируют целый ряд БАВ: эстеразы, протеазы и антипротеазы; лизосомальные гидролазы — коллагеназа, эластаза, лизоцим, α-макроглобулин; монокины — ИЛ-1, колониестимулирующий фактор, фактор, стимулирующий рост фибробластов; антиинфекционные агенты — интерферон, трансферрин, транскобаламин; компоненты комплемента: С1, С2, СЗ, С4, С5, С6; дериваты арахидоновой кислоты: простагландин Е2, тромбоксан А2, лейкотриены. Активированные макрофаги синтезируют и свыделяют интерлейкин-1 (ИЛ-1). Он находит свои мишени (миоциты, синовиоциты, гепатоциты, костные клетки, лимфоциты, нейроциты). На мембранах этих клеток имеются специфические рецепторы, благодаря которым ИЛ-1 действует именно на них, а не на другие клетки. Действие ИЛ-1 универсально, т.е. срабатывает при любом инфекционном (воспалительном) заболевании, причем в самом начале, и таким образом дает сигнал указанным органам включиться в воспалительный (инфекционный) процесс. Характерные для ранних этапов заболевания симптомы (головная боль, боль в мышцах и суставах, сонливость, лихорадка, лейкоцитоз и увеличение содержания белков, в том числе иммуноглобулинов) объясняется именно действием ИЛ-1.
Стимулируют функцию макрофагов (моноцитов): Mg, Zn, P5P, малат, Бета каротин, В5, фолиновая кислота, вит.С, НАДН, масло печени акулы, карнитин, глютамин, сныть, астрагал, кошачий коготь. эхинацея, женьшень, желтокорень канадский, солодка, кукурма, мирра.
Угнетают: табак, Cu, Р5Р, SAM, глютатион, ацетил коэнзим А, глюкуроновая кислота, сера.
Нейтрофилы. Главная функция этих клеток — фагоцитоз. Из костного мозга они выделяются в кровь, эмигрируют из сосудов и в больших количествах скапливаются в воспаленной ткани. Их активное их размножение, и миграция, и фагоцитоз подвержены регулирующему влиянию БАВ. Действие их проявляется, только тогда, когда на клетках имеются рецепторы, специфически реагирующие с медиатором воспаления: гистамином, адреналином, глюкокортикоидами, гамма-глобулинами и т.д.В цитоплазме нейтрофилов имеется два типа гранул: первичные азурофильные (более крупные) — обычные лизосомы, вторичные, или специфические гранулы мельче содержащие: щелочную фосфатазу, лизоцим, лактоферрин, а также глюкозамингликаны и белки катионовой природы; в них не содержится кислых гидролаз. В первичных гранулах содержатся кислые гидролазы, лизоцим, миелопероксидаза и катионные белки. Нейтрофилы, после выполнения своей функции погибают. Они образуются из стволовых клеток — миелобластов в результате процесса прогрессирующей пролиферации (продолжительность 6 сут) и последующего процесса созревания (продолжительность тоже 6 сут), в ходе которого клетка лишается практически всех органелл. В костном мозге образуется депо нейтрофилов. Из костного мозга они выходят в кровоток. Из крови они поступают в ткани или фиксируются на поверхности кровеносных сосудов (соотношение 1:1). Полупериод их нахождения в крови—6—7 ч. Свои функции они осуществляют в тканях, где переживают еще около двух дней, а потом погибают.
Рис. 5. Эмиграция лейкоцитов в очаге воспаления (В. Войнов 2007)
Рис. 6 .Роль нейтрофилов при воспалении
Предполагают, что после двухдневного пребывания в тканях нейтрофилы выходят на поверхность слизистых оболочек (прежде всего в пищеварительном тракте), откуда и выводятся из организма. Более чем 90% необходимой энергии (в виде АТФ) нейтрофилы получают за счет анаэробного гликолиза; роль аэробных путей в образовании АТФ незначительна (приблизительно 10% глюкозы превращается в пентозофосфатном цикле как источнике НАДФ-Н). В ходе фагоцитоза скорость гликолиза (и увеличение образования лактата) повышается на 25—30%, а скорость реакций пентозофосфатного пути повышается в 10 раз.
Бактерицидные факторы нейтрофилов:
1. Увеличение интенсивности дыхания (в 10—20 раз). Это, однако, не направлено на активацию аэробных путей обмена субстратов. Кислород необходим для ряда реакций, приводящих к образованию соединений пероксидной природы (С1_, I-; Br-, атомарного О2, ОН- и Н202) с участием супероксиддисмутазы, каталазы, миелопероксидазы, с помощью которых нейтрофилы уничтожают фагоцитированные микроорганизмы.
Радикалы ОН- являются нестабильными, но крайне реактивными образованиями, которые реагируют практически со всеми органическими соединениями. Они возникают и в ходе процесса липопероксидации: под влиянием липооксигеназ из ненасыщенных жирных кислот образуются их пероксидеривы.
В цитоплазме нейтрофилов возникает избыток Н202, который необходимо устранить. Одну из возможностей для этого предоставляет глютатионпероксидаза.
н2о2 + 2GSH ↔GSSG + Н20
Восстановленная форма глютатиона (GSH) образуется в результате обратной реакции, катализируемой глютатионредуктазой.
2GSSG +2НАДФ+ 2Н+ ↔2НАДФ+ 4GSH
Избыток Н202 может быть устранен и в результате действия каталазы, но эта реакция идет при очень высоких концентрациях Н202.
2Н202→ 2Н20 + 02
Рис.7.Роль нейтрофилов в процессе повреждения эндотелия
Рис. 8.Эффекты нейтрофилов
Рис. 9. Образование и функция реактивного кислорода по К. Смиту (2007).
НАДФН-оксидаза локализуется на поверхности цитоплазматической мембраны нейтрофилов, поэтому в результате ее действия большие количества 02-, Н202 и 1О2 оказываются и в промежуточном веществе. В ходе фагоцитоза этот фермент становится частью внутренней поверхности фагосомы и продукты его активности выделяются в ее полость, где и оказывают свое бактерицидное действие. Избыток Н202 возникает в цитоплазме благодаря дисмутации 02- который проникает сюда из фагосом и межклеточного пространства.
Одной из немногих реакций синтеза, протекающих в нейтрофилах, является синтез фосфатидов, особенно во время фагоцитоза. Очевидно, это связано с восстановлением липидных компонентов мембран, утрачиваемых при фагоцитозе.
2. Высокой концентрацией Н+, возникающей при диссоциации конечного продукта анаэробного гликолиза— лактата. В течение нескольких минут фагоцитоза рН в фагосомах снижается до 4—5, что уже само по себе действует бактерицидно па некоторые микроорганизмы. С другой стороны, это создает оптимальные условия для действия гидролаз, находящихся в гранулах, которые устраняют погибшие микробные тела.
3. Лизоцим, т. е. аминополисахаридаза, который расщепляет полисахаридные цепи пептидогликанового слоя клеточной стенки.
4. Комплекс основных белков, называемый фагоцитином. Этот комплекс представляет собой смесь белков, действующих главным образом при низких значениях рН. Он реагируют с отрицательно заряженными группами, находящимися на поверхности микробных тел и способствующими натяжению мембраны в результате взаимного отталкивания. При блокировке этих групп мембрана теряет стабильность своей структуры.
5. Лактоферрин. Это белковая молекула, имеющая высокое сродство к железу при низких значениях рН (в этом его отличие от трансферрина). Тонкий механизм действия неизвестен.
Все вышеперечисленные бактерицидные соединения неферментной природы локализуются в малых гранулах. Присутствующие там гликозамингликаны, очевидно, структуру, предназначенную для связывания основных белков тем же способом, что и гистамин.
Функция нейтрофилов обеспечивается рядом процессов: наличие собственного движения, накопление на поверхности эндотелия в зоне воспаления, активное движение по направлению к микробам (хемотаксис), фагоцитоз, дегрануляция, бактерицидное действие и растворение погибших микробов. Движение нейтрофилов в крови и особенно их миграция в очаг воспаления происходит на основе хемотаксиса(общее биологическое явление, заключающееся в изменении положения их тела в пространстве, обусловленное изменениями собственной подвижности под воздействием определенного химического сигнала (агента)). Хемотаксическим действием обладают фрагменты составляющих комплемента, главным образом СЗа и C5B. C5в. Цитоплазматическая мембрана нейтрофилов содержит для него специальный рецептор, который после взаимодействия с ним индуцирует повышение проницаемости мембраны для К+, Na+ и Са2+ с увеличением содержания последнего иона в цитоплазме. Как и у бактерий, после этого происходит метилирование определенного белка мембраны с последующей конденсацией актиновых волокон и их накопление в том полюсе клетки, который обращен в сторону движения. Кроме петидов — производных комплемента, хемотаксические сигналы подает 12-гидрокси-5, 8, 10,14-эйкозотетраеновая кислота (ЭТЭК), являющаяся продуктом окисления арахидоновой кислоты липооксигеназой. Она при агрегации тромбоцитов, но может возникать при любом процессе, при котором освобождается арахидоновая кислота, например, при лизисе мембран под влиянием компонентов комплемента. С этих же позиций можно объяснить и хемотаксическое действие расщепления коллагена(адгезия тромбоцитов — ЭТЭК) или каликреина (продуцирование кининов и необратимое повреждение клеток — ЭТЭК). Все это указывает на то, что на поверхности мембраны нейтрофилов находятся рецепторы, способные трансформировать изменения импульсов в изменение направления движения. Нейтрофил всегда направляется к поврежденным, но никогда к погибшим клеткам. Действие нейтрофилов не всегда бывает таким успешным, как это было описано. В некоторых случаях нейтрофилам не удается элиминировать вредные агенты, более того, их действие приводит к гибели нейтрофилов Погибающие нейтрофилы становятся источником эндогенного пирогенна.
Стимулируют функцию нейтрофилов:I, Br, Cl, Se, Zn, Вит А.Е, С, В3,П5Ф,Mg, Cu, карнитин, глутамин. таурин. аденозилкабаламин, фолиевая кислота NAC, аденозилкабаламин, кведцертин, кукурма, имбирь, горчица, эхинацея.
Угнетают:сахароза, фруктоза, глюкоза, медь, П-5-Ф, SAM (Mg , ATФ), глютатион, Вит В5, глюкуроновая кислота, сера.
Эозинофилы. На наружных мембранах имеются рецепторы для комплемента, иммунных комплексов, содержащих IgE, IgG. Из ферментов следует упомянуть гистаминазу и арилсульфатазу В. Важную роль играет большой катионный белок, который способен нейтрализовать гепарин, повреждать личинки ряда паразитов. Миграция и активация эозинофилов происходит под влиянием комплемента (С5а и С5—С7), пептидов тучных клеток, ПГД, веществ, продуцируемых гельминтами.
Стимулируют функцию эозинофилов:Mg, Cu, Zn, Fe,ГАМК,П5Ф, таурин, глицин, кукурма, имбирь, горчица, хрен, косточка дикой яблони, арбуз.
Угнетают: Гинко-билоба, фолиновая кислота, П5Ф, Вит В2 (ФАДН2), В3 (НАДН), Zn.
Тромбоциты. Самые постоянные и самые универсальные участники воспаления. В них содержатся вещества, влияющие на проницаемость сосудов, на их сократимость, на рост и размножение клеток, а главное — на свертываемость крови.
Табл. 1. Клетки, участвующие в воспалении
Название клеток | Вырабатываемые и секретируемые вещества | Участие в воспалении |
Макрофаги: | Интерлейкин-1, | Фагоцитоз |
фиксированные | ферменты | Кооперация с другими клетками воспаления. Действие на фибробласты, лимфоциты, гепатоциты, нейроны |
подвижные | интерферон | |
печеночные | фрагменты комплемента | |
легочные | простагландины | |
селезеночные | ингибиторы протеаз | |
Тучные клетки | Гистамин, фактор хемотаксиса эозинофилов, гепарин, фактор активации тромбоцитов, медленно реагирующая субстанция | Выработка биологически активных веществ |
Нейтрофилы | Фактор активации тромбоцитов, лейкотриены, ферменты, антимикробные факторы | Хемотаксис, фагоцитоз, цитотоксическое действие |
Эозинофилы | Гистаминаза, арилсульфатаза, большой катионный белок | Деградация гистамина, лейкотриенов |
Тромбоциты | Простагландины, тромбоксан, лейкотриены; тромбоцитарный фактор роста, фактор проницаемости, катионные белки, серотонин, гистамин, гидролазы, адреналин | Агрегация, свертывание крови |
Лимфоциты Т и В | Интерлейкины, лимфокины, иммуноглобулины | Иммунитет, киллерное действие |
Фибробласты | Коллаген, гликозамингликаны, фибронектин | Миграция, пролиферация, созревание; восстановление дефекта |
Тучные клетки (лаброциты).Происходят из базофилов в тканях.При повреждении они выбрасывают содержащиеся в их гранулах гистамин и гепарин. А так как эти клетки в большом количестве располагаются по краям сосудов, то и действие указанных веществ проявляется прежде всего на сосудах (гиперемия). Макрофаги и лаброциты находятся в тканях постоянно (клетки-резиденты). Другие клетки воспаления проникают в зону воспаления со стороны (клетки-эмигранты). К ним относятся полиморфно-ядерные нейтрофилы, эозинофилы и лимфоциты. Стимулируют функцию базофилов:аллергены, гистидин, Р5Р, Mg, Zn.
Ингибируют: Mg,Zn, Cu, АТФ, Витамин Е, В5,каротиноиды, SAM, Лютеин (зеаксантин),кверцетин, гесперадин, глютатион, глюкуроновая кислота, сера, черника. Лимфоциты.Эти клетки играют роль при любом воспалении, особенно при иммунном. Фибробласты. Действие фибробластов проявляется в последней стадии процесса, когда в очаге воспаления увеличивается число этих клеток, оживляется синтез в них коллагена и гликозамингликанов.
Рис.10. Тучная клетка, биохимические функции
Рис. 11. Фагоцитоз (общие сведения, недостаточность) (В. Войнов 2007)
Date: 2015-07-22; view: 2445; Нарушение авторских прав
Источник