Характеристика клеточных медиаторов воспаления

Характеристика клеточных медиаторов воспаления thumbnail
Лекции.Орг

Клеточные медиаторы – это вещества, которые выделяются из клеток, находящихся непосредственно в очаге воспаления. К таким клеткам относятся тучные и эндотелиальные клетки, лейкоциты, тканевые макрофаги, тромбоциты, фибробласты и другие. Для участия в воспалительном процессе требуется активация клеток в очаге повреждения. Клеточные медиаторы подразделяются на предсуществующие (преформированные)и вновь образованные.

Преформированные медиаторы образуются клетками постоянно и высвобождаются сразу после повреждения. К их числу относят вазоактивные амины (гистамин, серотонин), лизосомальные ферменты, неферментные катионные белки и нейропептиды.

Гистамин— продукт декарбоксилирования гистидина. Главный источник гистамина при воспалении — тучные клетки и базофилы крови. Значительная часть тучных клеток сосредоточена в коже, слизистых оболочках дыхательных путей, желудочно-кишечного тракта, выделительной системы, где они располагаются вокруг мелких кровеносных, лимфатических сосудов, а также и в местах скопления нервных окончаний. Тучные клетки высвобождают гистамин из специфических гранул. Слившиеся между собой специфические гранулы могут выделять медиатор через видимые поры.

Рецепторы к гистамину подразделяются имеют различное распределение в тканях и опосредуют различные эффекты при взаимодействии с гистамином. Биологические эффекты гистамина, главным образом, связаны с действием на Н1-рецепторы, которые связаны с G-белком (G-альфа q/11 и Gi/Go) (Рис.3). После взаимодействия с рецептором, происходит активация фосфолипаз и мобилизация кальция из депо. Клинически эффекты гистамина проявляются эндотелий-зависимой вазодилатацией, сокращением гладкой мускулатуры кишечника и бронхов, и болью.

Рис. 3. Механизм эффектов гистамина

Серотонин.Главный источник серотонина при воспалении – тромбоциты крови. Тромбоциты сами не вырабатывают серотонин, а захватывают его из плазмы крови и накапливавают. В плазме крови содержится серотонин, образующи йся в нервных клетках и в энтерохромаффинных клетках кишечника. Серотонин взаимодействует с серотониновыми рецепторами (М- и Д- типов) и стимулирует агрегацию тромбоцитов и влияет на сосудистый тонус, преимущественно как вазоконстриктор. Кроме того, серотонин повышает проницаемость сосудистой стенки и способствует развитию отека. Серотонин оказывает влияние на течение метаболических процессов, регулируя моторную и секреторную функции желудочно-кишечного тракта, является специфическим нейротрансмиттером центральной нервной системы.

Гепаринявляется протеогликаном, и основной его источник – тучные клетки. Высокий отрицательный заряд молекулы гепарина образует матрикс секреторных гранул, к которому с помощью ионной связи прикреплены многие преформированные положительно заряженные медиаторы, в том числе гистамин и протеазы. Высвобождаясь из тучных клеток вместе с гистамином и другими медиаторами, гепарин оказывает противосвертывающее действие, поскольку является первичным естественным антикоагулянтом. Кроме того, он способен тормозить активность лизосомальных ферментов, содействовать прикреплению фибронектина к фибробластам, а также инактивировать тромбин.

Протеолитические ферменты.В очаг воспаления выделяется большое количество ферментов из разных клеток: лейкоцитов (желатиназа, эластаза, коллагеназа, катепсины), из тучных клеток (химаза, триптаза), ферменты лизосом из поврежденных паренхиматозных клеток. Протеазы повреждают клеточные мембраны, разрушают базальную мембрану сосудов, повышая сосудистую проницаемость, вызывают изменение активности некоторых других биологически активных веществ (как активацию, так и инактивацию).

Субстанция Р увеличивает проницаемость сосудов, способствует дегрануляции тучных клеток, активирует синтез и высвобождение медиаторов воспаления.

3.2.2.2. Медиаторы, синтезированные «de novo» (вновь образованные) представлены метаболитами арахидоновой кислоты (простагландинами, тромбоксанами, лейкотриенами), цитокинами, а также активными формами кислорода (гидроксил радикалом, супероксид анион-радикалом, пергидроксилом, перекисью водорода, синглетным молекулярным кислородом).

Эйкозаноиды: простагландины, тромбоксаны, лейкотриены — высокоактивные регуляторы клеточных функций. Для обозначения природных форм эйкозаноидов принято использование сокращенных названий, состоящих из трехбуквенной аббревиатуры. При этом первые две буквы указывают на принадлежность к определенной группе соединений: PG – простагландины, TX – тромбоксаны, LT – лейкотриены, LX – липоксины, HX – гепоксилины (HXA3 обуславливает миграцию нейтрофилов через стенку кишечника, а также регулируют активность пероксидазы, снижая оксидативное повреждение), LG – левугландины (LGE2 является производным простагландина и образует ковалентные связи с белковыми молекулами).

Разные типы эйкозаноидов участвуют в развитии воспалительного процесса при повреждении тканей. Такие признаки воспаления, как боль, отёк, лихорадка, в значительной мере обусловлены действием эйкозаноидов. Они имеют очень короткий период полураспада, поэтому оказывают эффекты как «гормоны местного действия», влияя на метаболизм продуцирующей их клетки по аутокринному, а на окружающие клетки – по паракринному механизму. Эйкозаноиды регулируют тонус гладкомышечных клеток и тонус сосудов, состояние бронхов, кишечника, матки. Они также регулируют экскрецию воды и натрия почками, влияют на процесс тромбообразования.

Главный субстрат для синтеза эйкозаноидов у человека – арахидоновая кислота, её содержание в организме человека значительно превышает другие субстраты: полиеновые кислоты, эйкозапентаеновую и эйкозатриеновую жирные кислоты.

Использование подстрочного индекса в названии эйкозаноидов, например, HXA3 , LTС5 , LXA4 , PGE1 , PGD2 , TXA3, отражает количество двойных связей в боковых цепях, которое определяется степенью ненасыщенности молекулы предшественника — соответствующей полиненасыщенной жирной кислоты.

Простагландины – это продукты метаболизма арахидоновой кислоты по циклооксигеназному пути. Простагландин Е2 (PGE2) вызывает вазодилатацию, повышает проницаемость сосудов и способствует развитию воспалительной гиперемии. PG-D2 – основной простагландин, образующийся в тучных клетках. Он расширяет сосуды, угнетает агрегацию тромбоцитов и оказывает хемотаксический и активирующий эффекты на клетки иммунной системы, прежде всего на Т-лимфоциты и эозинофилы. PG-I2 (простациклин) образуется исключительно в эндотелиальных клетках. Основными эффектами простациклина является вазодилатация и угнетение агрегации тромбоцитов (это мощный антагонист ТхА2).

Тромбоксаны: Основным веществом данной группы является ТхА2 (тромбоксан А2), который образуется преимущественно в тромбоцитах и, в меньшей степени, в эндотелиальных клетках. Он является активатором агрегации тромбоцитов и вазоконстриктором.

Лейкотриетны: источником которых являются тучные клетки, а также базофилы, эозинофилы, нейтрофилы и макрофаги. Биосинтез лейкотриенов происходит из арахидоновой кислоты с помощью фермента 5-липоксигеназы (5-LO) и запускается цитокинами, иммунными комплексами, а также микробными флогогенами.Лекотриен А4 (LtA4) является нестабильным, он взаимодействует с глутатионом и быстро превращается в Lt С4, а затем в LtD4 и LtE4 . Лейкотриены повышают тонус гладких мышц ЖКТ, повышают проницаемость сосудистой стенки для плазмы экссудацию. Лейкотриены D4 и Е4 образуются эозинофилами, тучными клетками и базофилами.

Нейтрофилы продуцируют исключительно лейкотриен B4 (LtB4). Эффектами от взаимодействия LtB4 с рецепторами является повышение миграции нейтрофилов в очаг воспаления и усиление киллинга в процессе фагоцитоза.

Читайте также:  Могут ли быть обильные выделения при воспалении

Фактор активации тромбоцитов (ФАТ)был впервые обнаружен в базофилах кролика при острой анафилактической реакции. Способность продуцировать ФАТ показана у многих клеток, в особенности нейтрофилов, эозинофилов, макрофагов и эндотелиальных клеток. Молекула фактора активации тромбоцитов синтезируется de novo фосфолипазой A2. Основным эффектом ФАТ является активация тромбоцитов, а также вазодилатация.

Активные формы кислорода (АФК).При воспалении наибольшие количества АФК образуются в макрофагах и нейтрофильных лейкоцитах, т.к. АФК являются важной частью их антимикробного арсенала: перекись водорода [Н2О2],супероксидный радикал [О2×-], гидроксильный радикал [×ОН], гидропероксильный радикал [НО2×]).

При воспалении цитокины и другие стимулы вызывают экспрессию индуцируемой NO-синтазы в макрофагах, эндотелиальных клетках, паренхиматозных клетках и т.д. Количество оксида азота, который образуется индуцибельной NO-синтазой, в несколько раз превышает его физиологические концентрации, благодаря чему он начинает проявлять свое повреждающее действие. При взаимодействии супероксидиона О2-* с оксидом азота образуется пероксинитрит [ONOO-]. Пероксинитрит является сильным окислителем. Благодаря своим свойствам, он способен вызывать повреждения широкого спектра молекул в клетке, в том числе ДНК и белков.

Цитокины представляют собой разнородную группу гликопротеинов. Цитокины участвуют во врожденном иммунитете и регулируют ответ нейтрофилов, натуральных киллеров, макрофагов, тучных клеток и эозинофилов на микробные и химические флогогены. Через цитокины опосредуется экспрессия адгезионных молекул на лейкоцитах и эндотелии, происходит усиление реакции образования свободнорадикальных форм кислорода, вазоактивных аминов, нейропептидов, синтез производных арахидоновой кислоты (простагландинов и лейкотриенов), которые также регулируют цитокиновую активность.

Важной функцией цитокинов является активация факторов системы комплемента, синтез защитных пептидов, экспрессия «scavenger» рецепторов и многих других рецепторов. Цитокины IL-1, IL-6 и TNF (tumor necrosis factor «фактор некроза опухоли»- ист. название) являются главными в развитии острой фазы воспаления.

Интерлейкин-1 (IL-1), имеет множество свойств и функций. К основным из них относятся лихорадка и активация образования нейтрофилов и тромбоцитов. Источниками интерлейкина-1 являются дендритные клетки, моноциты и макрофаги, тучные клетки, нейтрофилы и лимфоциты, эпителиальные и эндотелиальные клетки.

Фактор некроза опухолей (TNF-α) является цитокином, источником которого являются макрофаги, моноциты крови, T- и B-лимфоциты, натуральные киллеры, нейтрофилы, эозинофилы, и другие клетки. Взаимодействие цитокина с рецепторами (TNFR1 и TNFR2) приводит к экспрессии молекул адгезии, активации моноцитов и нейтрофилов, запуску образования радикалов кислорода, пролиферации фибробластов.

Интерлейкин – 6 (IL-6): Основными источниками интерлейкина-6 (Il-6) являются макрофаги, Тh2, эндотелий и энтероциты. К его эффектами относятся лихорадка, индукция синтеза в печени белков острой фазы, созревание и дифференцировка B-клеток, стимуляция гипоталамо-гипофизарно-надпочечниковой системы,.

3.3.Противовоспалительные медиаторы –вещества, ограничивающие синтез и/или эффекты провоспалительных медиаторов и, тем самым, подавляющие процесс воспаления. По своему действию противовоспалительные медиаторы могут быть разделены на:

· ферменты, разрушающие медиаторы воспаления (гистаминаза, арилсульфатаза и др.);

· противовоспалительные цитокины: антагонист рецептора интерлейкина -1 (IL1Ra), интерлейкин -10;

· липоксины, резолвины и протектины относятся к трем различным семействам медиаторов, но имеют одинаковое противовоспалительное действие при остром и хроническом воспалении.

Липоксины (LXА4 и LXB4)образуются из арахидоновой кислоты липооксигеназой -5 и представляют собой группу липидных противовоспалительных медиаторов. Впервые они были описаны C.N. Serhan в 1995 году. Липоксины подавляют хемотаксис нейтрофилов, их адгезию и трансмиграцию через эндотелий, действуя локально и быстро инактивируясь. Действие липоксинов на клетки миелоидного и лимфоидного происхождения опосредовано через рецепторы LXR и направлено на модуляцию цитокино-хемокинового профиля. Липоксины подавляют синтез цитокинов и матриксных металлопротеиназ. Липоксины также обладают антифибротической активностью, подавляя действие факторов роста, пролиферацию эндотелиоцитов и фибробластов. К эффектам липоксинов относится снижение экспрессии генов провоспалительных цитокинов, уменьшение роллинга и адгезии нейтрофилов, подавление рекрутирования нейтрофилов, снижение проницаемости сосудов кожи.

Резолвины и потектины образуются из ω-3 жирных кислот. Резолвины (RvE, RvD1,RvD2,RvD3,RvD4) снижают индуцируемый эндотоксином синтез клетками Купфера IL-1 и TNF-α, а также уменьшают инфильтрацию ткани нейтрофилами. Резолвины регулируют активность Т-хелперов-2-типа и ускоряют заживление ран. Протектины (протектин D1, нейропротектин D1) уменьшают инфильтрацию тканей нейтрофилами и, таким образом, обладают противовоспалительным действием на ткань в условиях острого воспаления.

Дата добавления: 2016-11-23; просмотров: 1701 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник

Характеристика клеточных медиаторов воспаления

ТОП 10:

В ходе первичной и вторичной альтерации высвобождаются большие количества разнообразных медиаторов и модуляторов воспаления.

Медиаторывоспаления по происхождению делятся на гуморальные(образующиеся в жидких средах — плазме крови и тканевой жидкости) и клеточные.

Все гуморальные медиаторы являются предсуществующими,т.е. имеются в виде предшественников до активации последних; к ним относятся производные комплемента, кинины и факторы свертывающей системы крови.

Среди клеточных медиаторов выделяют предсуществующие(депонированные в клетках в неактивном состоянии) — вазоактивные амины, лизосомальные ферменты, нейропептиды, и вновь образующиеся(т.е. продуцируемые клетками при стимуляции) — эйкозаноиды, цитокины, лимфокины, активные метаболиты кислорода.

Основными источниками клеточных медиаторов являются:

1. Нейтрофилы,которые выделяют катионные белки, стимулируют высвобождение биогенных аминов из тромбоцитов и тучных клеток, содержат ингибитор высвобождения гистамина и гистаминазу. Протеазы нейтрофилов участвуют в образовании кининов и активных фрагментов комплемента (С3а, С3Ь). Нейтрофилы образуют простагландин (PG) E2 и другие эйкозаноиды. Ферменты нейтрофилов активируют как свертывание крови, так и фибринолиз.

2. Макрофагивыделяют ангиотензин-конвертазу, которая инактивирует брадикинин, превращает ангиотензин-I в ангиотензин-П. Они синтезируют PGE2, а также тромбоксаны и лейкотриены (LT). Поскольку PGE2 препятствует высвобождению клеточных медиаторов воспаления и подавляет агрегацию тромбоцитов, макрофаги, помимо провоспалительной, обладают и противовоспалительной функцией. Макрофаги синтезируют различные компоненты комплемента, обладают свертывающей и фибринолитической активностью.

3. Эозинофилыслужат отрицательными модуляторами воспаления. Они содержат гистаминазу, кининазу, ферменты, расщепляющие лейкотриены С и D (лизофосфалипазу, арилсульфатазу В, фосфолипазу D), главный щелочной белок, осуществляющий цитотоксическую функцию и нейтрализующий гепарин. Таким образом, ферменты эозинофилов нейтрализуют продукты тучных клеток, способствуют уничтожению клеточных остатков. Эозинофилы фагоцитируют секретируемые тучными клетками гранулы и подавляют высвобождение гистамина. Особый интерес представляет присутствие в эозинофилах лизофосфолипазы. Ее субстратом являются частично деградированные фосфолипиды, содержащиеся в мембранах погибших клеток. Высвобождая из фосфолипидов свободные жирные кислоты, лизофосфолипаза способствует образованию арахидоновой кислоты.

Читайте также:  Было двухстороннее очаговое воспаление

4. Тучные клетки и базофилывыделяют гистамин и серотонин, гепарин, факторы хемотаксиса нейтрофилов и эозинофилов, фактор активации тромбоцитов, протеолитические ферменты, они продуцируют пероксидазу, супероксид и пероксид водорода, а также протеазу, превращающую кининоген в кинин.

5. Тромбоцитысекретируют факторы роста и свертывания, вазоактивные амины и липиды, нейтральные и кислые гидролазы.

Производные комплемента(рис. 10-5) являются наиболее важными из гуморальных медиаторов воспаления. Среди почти 20 различных белков, образующихся при активации комплемента, непосредственное отношение к воспалению имеют его фрагменты С5а, С3а, С3Ь и комплекс С5Ь-С9:

• С5а и С3а являются медиаторами острого воспаления и анафилатоксинами (т.е. либераторами гистамина из тучных клеток), таким образом, они повышают проницаемость капилляров как прямо, так и опосредованно через гистамин (рис. 10-6);

• С5а des Arg и С3а образуются из С5а в плазме и тканевой жидкости под влиянием карбоксипептидазы N и повышают проницаемость посткапиллярных венул. Эффект С5а des Arg не связан с гистамином, но является нейтрофилзависимым, т.е. осуществляется за счет факторов проницаемости, высвобождаемых из полиморфно-ядерных гранулоцитов, — лизосомальных ферментов и неферментных катионных белков, активных метаболитов кислорода. Кроме того, С5а и С5а des Arg привлекают нейтрофилы. В отличие от них С3а практически не обладает хемотаксическими свойствами;

• С3Ь опсонизирует патогенный агент и, соответственно, способствует иммунной адгезии и фагоцитозу;

• комплекс С5Ь-С9 ответствен за лизис микроорганизмов и патологически измененных клеток.

Источником комплемента служат плазма крови и в меньшей мере тканевая жидкость. Усиленное поступление плазменного комплемента в ткань является одним из важных назначений экссудации. Активные компоненты комплемента высвобождают не только гистамин, но и интерлейкин (IL) 1, простагландины, лейкотриены, фактор, активирующий тромбоциты, и синергистически взаимодействуют с простагландинами и веществом Р.

6.Кинины— вазоактивные пептиды, образующиеся из кининогенов (а2-глобулинов) под влиянием калликреинов в плазме (брадикинин) и в тканевой жидкости (каллидин). Пусковым фактором активации калликреин-кининовой системы является активация при повреждении ткани фактора Хагемана (XII), превращающего прекалликреины в калликреины. Фактор XII присутствует в крови и имеет сродство к отрицательно заряженным поверхностям. В жидкой фазе крови он спонтанно диссоциирует на два фрагмента: ХПа — ферментативно активный фрагмент и ХПб. ХIIa адсорбируется на поверхности чужеродного агента (флогогена), где стабилизируется. Он обладает протеолитической активностью, субстратом которой являются сам фактор ХП и другой белок — прекаллекреин. Далее прекалликреин под действием ХПа превращается в протеазу калликреин. Калликреин резко усиливает образование ХНа из фактора ХП и одновременно действует на новый субстрат — так называемый высокомолекулярный кининоген (ВМК). Под действием калликреина из ВМК образуется брадикинин, являющийся одним из главных медиаторов воспаления. Брадикинин действует на эндотелий сосудов, вызывая «размыкание» краев клеток сосудистого эндотелия и открывая тем самым путь плазме крови в очаг воспаления. Таким образом, данная система обнаруживает чужеродное тело по его отрицательно заряженной поверхности. Поверхности же собственных клеток устроены так, что они не адсорбируют ХПа, не стабилизируют его и не индуцируют тем самым дальнейшую цепь событий. Это самый простой и примитивный способ отличать «свое» от «несвоего».

Кинины опосредуют расширение артериол и повышают проницаемость венул путем контракции эндотелиальных клеток. Они сокращают гладкую мускулатуру вен и повышают внутрикапиллярное и венозное давление, угнетают эмиграцию нейтрофилов, модулируют распределение макрофагов, стимулируют миграцию и митогенез Т-лимфоцитов и секрецию лимфокинов. Кроме того, они усиливают пролиферацию фибробластов и синтез коллагена и, следовательно, имеют значение в репаративных явлениях при хроническом воспалении. Одним из важнейших эффектов кининов является присущая им способность раздражать окончания чувствительных нервов, обусловливая возникновение воспалительной боли. Кинины усиливают высвобождение гистамина из тучных клеток, синтез простагландинов многими типами клеток, поэтому некоторые из их основных эффектов — вазодилатация, сокращение гладкой мускулатуры, боль — связывают с высвобождением других медиаторов, особенно простагландинов.

7.Эйкозаноидыявляются важным медиаторным звеном воспалительной реакции, о чем свидетельствуют их продолжительная продукция в очаге и тесная связь с ключевым событием воспаления — лейкоцитарной инфильтрацией, а также мощный противовоспалительный эффект ингибиторов их синтеза. В очаге воспаления основными продуцентами эйкозаноидов являются моноциты и макрофаги, хотя они образуются почти всеми типами ядерных клеток при стимуляции последних. Преобладающими эйкозаноидами в очаге воспаления оказываются простагландины(PGE2), лейкотриены(LTB4) и 5-гидропероксиэйкозатетраеновая кислота(5-HPETE). Образуются также, хотя и в меньшем количестве, тромбоксан A1(TхA2), PGF2a, PGD2, простациклин (PGI2), LTC4, LTD4, LTE4, другие HPETE. Главным эффектом эйкозаноидов является их влияние на лейкоциты; как мощные хематтрактанты они играют важную роль в механизмах самоподдержания лейкоцитарной инфильтрации.

8.Простагландинысами не повышают сосудистую проницаемость, но, будучи сильными вазодилататорами, усиливают гиперемию и, следовательно, экссудацию. Простагландины и лейкотриены имеют значение в генезе воспалительной боли.

9.Лейкотриены(синтезируются во всех клетках крови, кроме эритроцитов, а также в адвентиции сосудов, тучных клетках, легких) способствуют сокращению гладкой мускулатуры желудочнокишечного тракта, оказывают сосудосуживающее действие (в том числе коронарных артерий). LTC4, LTD4, LTE4 повышают проницаемость сосудов путем прямой контракции эндотелиальных клеток, а LTB4 — как нейтрофилзависимый медиатор. Лейкотриены приводят к спазму гладкой мускулатуры бронхов (эффект бронхоспазма в отличие от вызванного гистамином развивается медленнее, но является более продолжительным), развитию отека, привлечению эозинофилов, повышению секреции слизи и нарушению ее транспорта. Органом-мишенью для лейкотриенов является сердце. Выделяясь в избытке, они ингибируют (на 60%) сократимость сердечной мышцы, уменьшая коронарный кровоток и усиливая воспалительную реакцию.

10.Тромбоксаны(образуются в ткани мозга, селезенки, легких и в тромбоцитах, клетках воспалительной гранулемы) вызывают адгезию и агрегацию тромбоцитов, способствуют развитию тромбоза при ишемической болезни сердца, оказывают вазоспастическое действие.

Читайте также:  Рожистое воспаление на ступне

11.Биогенные амины — гистамин и серотонинсчитаются основными медиаторами первоначальных микроциркуляторных нарушений в очаге острого воспаления и немедленной фазы повышения проницаемости сосудов.

Незначительное количество нейромедиатора серотонинасодержится в тучных и энтерохромаффинных клетках, но главным его источником являются тромбоциты. Эффекты серотонина неоднозначны и меняются в зависимости от количества.

12.Гистаминдействует двояко в отношении сосудов и клеток. Через Н1-рецепторы он расширяет артериолы и угнетает эмиграцию и дегрануляцию лейкоцитов, а через H1-рецепторы суживает венулы, повышая таким образом внутрикапиллярное давление, и стимулирует эмиграцию и дегрануляцию лейкоцитов. При обычном течении воспаления гистамин действует преимущественно через Н1-рецепторы на нейтрофилах, ограничивая их функциональную активность, и через Н1-рецепторы на моноцитах, стимулируя их. Таким образом, наряду с провоспалительными сосудистыми эффектами он оказывает противовоспалительное действие. Обладая способностью к регуляции пролиферации, дифференцировки и функциональной активности фибробластов, гистамин участвует в процессах репарации. Модуляторные эффекты гистамина также опосредуются циклическими нуклеотидами.

13.Лизосомальные ферментывысвобождаются в очаге воспаления из гранулоцитов и моноцитов-макрофагов в ходе их хемотаксической стимуляции, миграции, фагоцитоза, повреждения, гибели. В гранулах нейтрофилов содержатся протеиназы — эластаза, катепсин G и коллагеназы, которые обеспечивают противомикробную защиту, лизируя убитые микроорганизмы. Они обладают медиаторным и модуляторным эффектами в отношении сосудистой проницаемости, эмиграции, фагоцитоза.

Повышение проницаемости сосудов под влиянием лизосомальных ферментов происходит за счет лизиса субэндотелиального матрикса, истончения и фрагментации эндотелиальных клеток и сопровождается геморрагией и тромбозом. Образуя или расщепляя важнейшие хемотаксины, лизосомальные ферменты модулируют лейкоцитарную инфильтрацию. В зависимости от концентрации они могут и сами усиливать или угнетать миграцию нейтрофилов. Нейтральные протеиназы способны модулировать фагоцитоз. Например, эластаза образует опсонин С3Ь, необходимый для адгезии частиц к поверхности нейтрофила. Следовательно, нейтрофил сам обеспечивает себе механизм усиления фагоцитоза. Как катепсин G, так и эластаза повышают сродство Fc-рецептора мембраны нейтрофила к комплексам иммуноглобулинов и, соответственно, усиливают эффективность поглощения частиц.

Благодаря способности лизосомальных ферментов активировать системы комплемента, калликреин-кининовую, свертывания и фибринолиза, высвобождать цитокины и лимфокины, воспаление развертывается и самоподдерживается в течение длительного времени.

14.Неферментные кат ионные белки,содержащиеся в азурофильных и в специфических гранулах нейтрофилов, обладают таким важным свойством, как высокая микробицидность. В этом отношении они находятся в синергистическом взаимодействии с системой миелопероксидаза — перекись водорода. Катионные белки сорбируются на отрицательно заряженной мембране бактериальной клетки путем электростатического взаимодействия, нарушая проницаемость и структуру ее оболочки. Затем наступает гибель микроорганизма с последующим эффективным лизисом его лизосомальными протеиназами. Кроме того, высвободившиеся катионные белки опосредуют повышение проницаемости сосудов (способствуя дегрануляции тучных клеток и высвобождению гистамина), а также адгезию и эмиграцию лейкоцитов.

14.Цитокиныпри воспалении продуцируются главным образом стимулированными моноцитами и макрофагами (монокины), а также нейтрофилами, лимфоцитами, эндотелиальными и другими клетками. Цитокины повышают сосудистую проницаемость (нейтрофилзависимым путем), адгезию и эмиграцию лейкоцитов. Наряду с провоспалительными свойствами цитокины важны и для непосредственной защиты организма, поскольку стимулируют нейтрофилы и моноциты к умерщвлению, поглощению и перевариванию внедрившихся микроорганизмов, а также усиливают фагоцитоз путем опсонизации патогенного агента. Стимулируя раневое очищение, пролиферацию и дифференцировку клеток, цитокины усиливают репаративные процессы. Наряду с этим они могут опосредовать тканевую деструкцию (деградацию хрящевого матрикса и резорбцию кости) и, таким образом, играть роль в патогенезе заболеваний соединительной ткани, в частности ревматоидного артрита. Действие цитокинов вызывает также ряд метаболических эффектов, лежащих в основе общих проявлений воспаления — лихорадки, сонливости, анорексии, изменения обмена веществ, стимуляции гепатоцитов к усиленному синтезу белков острой фазы, активации системы крови и т.д. Цитокины взаимодействуют между собой, с простагландинами, нейропептидами и другими медиаторами.

15.Активные метаболиты кислорода,прежде всего свободные радикалы — супероксидный анион-радикал (О*-) , гидроксильный радикал (НО*), гидроперекисный радикал (НО*,), вследствие наличия на их внешней орбите одного или нескольких непарных электронов обладают повышенной реактивностью с другими молекулами и, следовательно, значительным деструктивным потенциалом, который имеет значение в патогенезе воспаления (рис. 10-8).

Источником активных форм кислорода — кислородных радикалов, перекиси водорода (Н1О1), синглетного кислорода (1О1), гипохлорита (HOCl) и др. — служат: респираторный взрыв фагоцитов при их стимуляции, каскад арахидоновой кислоты в процессе образования эйкозаноидов, ферментные процессы в эндоплазматическом ретикулуме и пероксисомах, митохондриях, цитозоле, а также самоокисление малых молекул, таких как гидрохиноны, лейкофлавины, катехоламины и др.

Радикалы кислорода повышают бактерицидную способность фагоцитов, а также имеют медиаторную и модуляторную функ-

ции. Будучи медиаторами воспаления, активные метаболиты кислорода вызывают перекисное окисление липидов, повреждение белков, углеводов, нуклеиновых кислот, что повышает проницаемость сосудов (вследствие повреждения эндотелиальных клеток) и способствует стимуляции фагоцитов.

К медиаторам и модуляторам воспаления относят также нейропептиды— вещества, высвобождаемые С-волокнами в результате активации воспалительным агентом полимодальных ноцицепторов, играющих важную роль в возникновении аксон-рефлексов в конечных разветвлениях первичных афферентных (чувствительных) нейронов. Наиболее изученными являются вещество Р, кальцитонин-генсвязанный пептид, нейрокинин А. Нейропептиды повышают проницаемость сосудов, и эта их способность во многом опосредована медиаторами, происходящими из тучных клеток. Между немиелиновыми нервами и тучными клетками имеются мембранные контакты, которые обеспечивают сообщение центральной нервной системы с очагом воспаления. Нейропептиды синергистически взаимодействуют в повышении проницаемости сосудов как между собой, так и с гистамином, брадикинином, С5а, фактором, активирующим тромбоциты, лейкотриеном В4; антагонистически — с АТФ и аденозином. Они оказывают также потенцирующее воздействие на привлечение и цитотоксическую функцию нейтрофилов, усиливают адгезию нейтрофилов к эндотелию венул. Кроме того, нейропептиды повышают чувствительность ноцицепторов к действию различных медиаторов, в частности простагландина E1 и простациклина, участвуя таким образом в формировании боли при воспалении.

Кроме вышеперечисленных веществ, к медиаторам воспаления относятся также ацетилхолин и катехоламины,высвобождающиеся при возбуждении холин- и адренергических структур. Ацетилхолин вызывает расширение сосудов и играет роль в аксон-рефлекторном механизме артериальной гиперемии при воспалении. Норадреналин и адреналин тормозят рост сосудистой проницаемости, выступая главным образом как модуляторы воспаления.



Источник