Глобулины острой фазы воспаления
Белки острой фазы воспаления — это неоднородная группа белковых субстанций, которые интенсивно синтезируются при развитии острой фазы воспаления по принципу индуцибельной системы генной регуляции и являются важными компонентами врожденных механизмов резистентности.
Почти все острофазовые белки вырабатываются гепатоцитами под влиянием доиммуных цитокинов макрофагов (в первую очередь интерлейкин-6 [ИЛ-6], а также интерлейкин-1β [ИЛ-1β] и фактор некроза опухоли α [ФНО- α]).
Все острофазовые белки условно разделены на три группы (А, Б и В) и отличаются друг от друга по механизму действия. В группу А включены церулоплазмин и С3-компонент комплемента. При развитии воспаления их содержание в плазме крови возрастает на 25-50% от исходного. Группу Б составляют α1-антитрипсин, α1-антихимотрипсин, β2-макроглобулин, гаптоглобин и фибриноген. В острой фазе воспаления их уровень повышается в 2-3 раза. Перечисленные острофазовые белки играют протективную роль, максимально ограничивая самоповреждение при воспалении, обуславливая наиболее придельное, а значит, и экономное использование других факторов врожденной резистентности.
И наконец, в третью группу включены С-реактивный белок, маннозосвязывающий протеин, сывороточный белок амилоида А и интерлейкин-1β. Их уровень при воспалении увеличивается почти в 1000 раз. Такие разнородные белки объединены в единую группу, исходя из практических соображений, поскольку их содержание при воспалении резко возрастает, они используются на практике как лабораторные маркеры воспалительного процесса. Данные белки острой фазы задействованы в эффекторных механизмах. Из таких белков наиболее изученными являются С-реактивный белок и маннозосвязывающий белок. Оба фактора синтезируются гепатоцитами и обладают по крайней мере двумя свойствами, которые определяют их противомикробную активность, — способностью к опсонизации и обеспечению активации комплемента.
Церулоплазмин относится к так называемым антинутриентам — эффективно связывает медь, предотвращая поступление этого микроэлемента в микроорганизм.
Сывороточный белок амилоида А
Сывороточный белок амилоида А используется для быстрого механического заполнения дефектов, образованных вследствие некротических процессов при воспалении.
Многие острофазовые белки являются ингибиторами протеаз (например, α1-антитрипсин, α1-антихимотрипсин и β2-макроглобулин). Именно они инактивируют лизосомальные ферменты, высвобожденные из разрушенных клеток, нейтрализуют протеолитические энзимы, секретированные фагоцитами, а также обеспечивают корректную степень активации калликреин-кининовой системы и системы свертывания крови.
Гаптоглобин обеспечивает эвакуацию уцелевшего гемоглобина из очага воспаления.
Фибриноген при экссудации в периваскулярное пространство образует фибриновые сгустки, составляющие преграду для быстрого распространения воспалительного процесса, а также выполняет функцию опсонина.
С-реактивный белок (рис. 3) является своеобразным прототипом антитела и имеет высокую тропность к фосфорилхолину, лецитину и подобным им молекулам, которые широко представлены среди поверхностных структур микроорганизмов. Такие же молекулы находятся и на собственных клетках, однако они надежно экранированы от распознавания. Связавшись с указанной молекулой, С-реактивный белок может выступать в роли опсонина, облегчая распознавание инфекционного агента фагоцитами, или активировать систему комплемента по классическому пути. Дело в том, что данный фактор способен связывать Clq-компонент комплемента с последующим вовлечением всего каскада и формированием мембранатакующих комплексов.
Известно, что содержание СРБ резко возрастает при аутоиммунной патологии (в частности, при системных заболеваниях соединительной ткани). Бытует ошибочное мнение, что СРБ способствует аутоагрессии, хотя в действительности он призван ограничивать ее. Установлено, что С-реактивный протеин совершает опсонизацию и обуславливает дальнейшее разрушение экстраклеточной ДНК и клеточного детрита, которые могут стать причиной аутоиммунной атаки (scavengerfunction). Кроме этого, СРБ осуществляет экранирование наиболее распространенных аутоантигенных детерминант соединительной ткани (фибронектин, ламинин, поликатионные поверхности коллагена, липопротеины низкой и очень низкой плотности). Связываясь с этими лигандами, СРБ выполняет роль своеобразного пластыря, прикрывающего аутоантигены от распознавания и презентации, или же обеспечивает их дальнейшее разрушение, что приводит к утрате антигенных свойств. Материал с сайта https://wiki-med.com
Маннозосвязывающий лектин
Маннозосвязывающий протеин (МСП) является лектином и взаимодействует с остатками маннозы на поверхности клеточных стенок бактерий, опсонизируя их для фагоцитоза моноцитами (макрофаги как более зрелые клетки имеют мембранные маннозосвязывающие рецепторы). Данный протеин работает вместе с так называемыми лектин-ассоциированными протеазами 1 и 2. Присоединение этого фактора к микробным лигандам активирует протеазы, которые расщепляют С2- и С4-компоненты комплемента. Продукты расщепления — фрагменты С2а и С4Ь — формируют СЗ-конвертазу, которая инициирует дальнейший молекулярный каскад комплемента. Таким образом, комплекс маннозосвязывающего протеина и его лектин-ассоциированных протеаз является аналогом Cl-компонента комплемента. Но при этом активация комплемента происходит без участия иммунных комплексов, а значит, начинается сразу же после поступления инфекционного агента в организм.
В последнее время установлена важная роль МСП в аутоиммунных реакциях. Низкая экспрессия этого белка может рассматриваться как фактор риска СКВ, что связано с нарушением клиренса иммунных комплексов, которые образуются при любой инфекции. С другой стороны, МСП играет ведущую роль в аутоагрессии при ревматоидном артрите (РА). Известно, что одной из причин иммунных расстройств при РА является синтез дефектного IgG, который не содержит остатка галактозы. Это приводит к оголению N-ацетил глюкозаминовых групп, которые распознаются МСП как чужеродные, что вызывает активацию комплемента и аутоповреждение.
На этой странице материал по темам:
белки острого воспаления
белки острой фазы: классификация, значение в развитии воспалительной реакции
белки острой фазы воспаления реферат
белки острой фазы и маркеры воспаления что это значит
белки острй фазы
Источник
Белки острой фазы принимают участие в воспалительных реакциях:Антитрипсин,Антихимотрипсин,
Кислый гликопротеид, a2-Макроглобулин, Гаптоглобин, Церулоплазмин,С-реактивный белок,Фибриноген
Синтезируются в разных тканях макрофагами (моноцитами), которые занимают стратегическую позицию на границе внешней и внутренней среды
При любом воспалительном процессе в организме возрастает их уровень в крови и они называются белками острой фазы (маркеры воспаления)
Биологическая роль белков острой фазы
В ответ на любое повреждение (физическая травма, ожог, хирургическая операция, инфекция и т.д.) в организме развивается комплекс физиологических реакций, направленных на локализацию очага повреждения и восстановления нарушенных функций.
Воспаление сопровождается распадом клеток, (продукты распада- АФК, лизосомальные ферменты, микробные токсины, ионы металлов) выходят в межклеточное пространство и системный кровоток и могут повредить здоровые ткани
Защиту в этом случае осуществляют некоторые представители a1-, a2-, b- глобулинов, ограничивая очаг повреждения
Клиническое значение определения белков острой фазы — диагностика и мониторинг острого воспаления.
Белками иммунной системы являются g- глобулины (иммуноглобулины — антитела)
Синтезируются В-лимфоцитами
Антитела специфически связывают антигены, что является решающим звеном в системе защиты организма от внеклеточных вирусов и бактерий
В результате такого связывания последние распознаются как патогены и уничтожаются
Понятие о гипо-, гипер-, диспротеинемии. Электрофорез белков сыворотки крови: принцип метода, электрофоретические фракции белков сыворотки, входящие в состав фракций белки. Изменения протеинограммы при остром и хроническом воспалении.
Увеличение общего содержания белков плазмы (выше 85 г/л) называют гиперпротеинемией.Возникает при потере организмом воды ( рвота, диарея, обширные ожоги) и вследствие диспротеинемии за счет резкого увеличения продукции парапротеинов — патологических белков из класса g-глобулинов.
Уменьшение содержания белков (ниже 65 г/л) — гипопротеинемией, чаще всего обусловлена уменьшением количества альбуминов. Различают наследственную (врожденную), или первичную, и приобретенные, или вторичные, гипопротеинемии. Врожденная гипопротеинемия наблюдается в основном в варианте анальбуминемии, характеризующейся резким снижением или отсутствием альбуминов в крови. Вторичные гипопротеинемии возникают вследствие повышенных потерь белка при высокой протеинурии ожогах, массивном асците; в результате дефицита белка в рационе питания (например, при алиментарной дистрофии), а также в связи с повышенным распадом белков, нарушением их синтеза или усвоения (при интоксикации, лихорадке, гепатите, циррозе печени, панкреатите, поражении желудочно-кишечного тракта с синдромом нарушенного всасывания).
Изменения альбумин-глобулинового коэффициента и соотношения между отдельными белковыми фракциями — диспротеинемией.Диспротеинемии подразделяют на наследственные и приобретенные
Электрофорез белков.Общий белок сыворотки крови состоит из смеси белков с разной структурой и функциями. Разделение на фракции основано на разной подвижности белков в разделяющей среде под действием электрического поля. При определённом значении рН и ионной силы раствора белки двигаются в электрическом поле со скоростью, пропорциональной их суммарному заряду. Белки, имеющие суммарный отрицательный заряд, двигаются к аноду (+), а положительно заряженные белки — к катоду (-). Обычно методом электрофореза выделяют 5-6 стандартных фракций: 1 — альбумины и 4-5 фракций глобулинов (альфа1-, альфа2-, бета- и гамма-глобулины, иногда отдельно выделяют фракции бета-1 и бета-2 глобулинов).
Острое воспаление — повышение содержания альфа-1 и альфа-2-глобулинов, наблюдающееся при острой пневмонии, остром бронхите, острой вирусной инфекции, остром пиелонефрите, инфаркте миокарда, травмах (включая хирургические), новообразованиях.
Хроническое воспаление — увеличение содержания гамма-глобулинов (ревматоидный артрит, хронический гепатит).
11. Небелковые органические вещества плазмы крови – метаболиты обмена белков (мочевина, креатинин), липидов (липопротеины), углеводов (глюкоза, лактат). Процессы образования, их органная локализация, пути выведения из организма (крови), возможные причины изменения концентрации в плазме крови, клинико-диагностическое значение определения концентрации.
Мочевина образование:образование карбамоилфосфата(орнитиновый цикл) идет путем конденсации NH3, CO2 и АТФ, катализируемое карбомоилфосфатсинтетазой (фермент действует в митохондриях), реакция происходит в печени и является начальной стадией синтеза мочевины — конечного продукта метаболизма азота.химическая сущность орнитинового циклазаключается в следующим: из аммиака, углекислого газа, воды и аминогруппы аспартата в несколько химических реакций на матрице орнитина строится молекула мочевины.Мочевина выводится с мочой. Повышение концентрации мочевины в крови –уремия, может быть связана: у здоровых людей с физической нагрузкой.При высокой температуре – гиперметаболический синдром.Чаще всего уремия является маркером нарушения функции почек.При недостаточной активности ферментов орнитинового цикла возникают гипераммониемии — патологические состояния сопровождающиеся повышением концентрации аммиака в крови.
Креатинин образуется из креатинфосфата — источника энергиисокращения мышц, и затем выделяется в кровь. Из организма креатинин выводится почками с мочой, поэтому креатинин (его количество в крови) — важный показатель деятельности почек. Высокий креатинин — показатель обильной мясной диеты (если повышен в крови и в моче), почечной недостаточности (если повышен только в крови). Уровень креатинина возрастает при обезвоживании организма, поражении мышц. Низкий уровень наблюдается при сниженном потреблении мяса, вегетарианской диете и голодании.
Липиды в водной среде нерастворимы, поэтому для их транспорта в организме образуются комплексы липидов с белками – липопротеины (ЛП). Различают экзо- и эндогенный транспорт липидов. К экзогенному относят транспорт липидов, поступивших с пищей, а к эндогенному – перемещение липидов, синтезированных в организме.Хиломикроны обеспечивают транспорт пищевых липидов от кишечника к тканям. Хиломикроны образуются в слизистой кишечника и транспортируются в кровь лимфатической системой. В мышцах и жировой ткани они разрушаются липазой липопротеинов, активирующейся апопротеином С-II. Под действием этого фермента хиломикроны быстро теряют бóльшую часть своих триацилглицеринов. Остатки хиломикронов утилизируются печенью.
ЛПОНП, ЛПППи ЛПНПтесно связаны между собой. Они транспортируют триацилглицерины, холестерин и фосфолипиды от печени к тканям. ЛПОНП образуются в печени и могут превращаться, как и хиломикроны, в ЛППП и ЛПНП путем отщепления жирных кислот. Образующиеся ЛПНП снабжают холестерином различные ткани организма.ЛПВП возвращают избыточный холестерин, образующийся в тканях, обратно в печень. Во время транспорта холестерин ацилируется жирными кислотами из лецитина. В этом процессе участвует лецитинхолестеринацилтрансфераза . Между ЛПВП и ЛПОНП также происходит обмен липидами и белками.
Нарушение соотношения между количеством ЛПНП, ЛПОНП и ЛПВП может вызывать задержку холестерина в тканях. Это приводит к атеросклерозуЛПНП называют атерогенными липопротеидами, а ЛПВП — антиатерогенными липопротеидами. При наследств енном дефиците ЛПВП наблюдаются ранние формы атеросклероза.
Глюкоза образуется путем глюконеогенеза — процесса образования в печени и отчасти в корковом веществе почек (около 10 %) молекулглюкозы из молекул других органических соединений — источников энергии, например свободных аминокислот, молочной кислоты, глицерина.
Несмотря на хорошую растворимость в воде, у здоровых людей глюкоза не выводится вместе с мочой, потому что при нормальной концентрации глюкозы в крови почки успевают впитывать глюкозу из мочи обратно в кровь. При увеличении уровня глюкозы в крови выше определенного значения почки теряют способность впитывать глюкозу из мочи, что приводит к появлению глюкозурии
Изменение концентрации: Повышение уровня глюкозы (гипергликемия):
Сахарный диабет I и II типа; Заболевания поджелудочной железы (острый и хронический панкреатит, панкреатит при эпидемическом паротите, муковисцидозе, опухоли поджелудочной железы); Хронические заболевания печени (цирроз печени, гемохроматоз); Физиологическая гипергликемия (умеренная физическая нагрузка, сильные эмоции, стресс, курение ).
Понижение уровня глюкозы (гипогликемия):
Заболевания поджелудочной железы (гиперплазия, аденома или карцинома бета-клеток поджелудочной железы (например, инсулинома) или недостаточность альфа-клеток островков — дефицит глюкагона); Передозировка гипогликемических препаратов и инсулина; Тяжелые болезни печени (цирроз, гепатит, карцинома, гемохроматоз); Нарушения питания (длительное голодание); Интенсивная физическая нагрузка, лихорадочные состояния.
Лактат является конечным продуктом анаэробного гликолиза. В условиях покоя основной источник лактата в плазме — эритроциты. При физической нагрузке лактат выходит из мышц, превращается в пируват в печени или метаболизируется мозговой тканью и сердцем.Повышается лактат в крови при тканевой гипоксии из-за снижения перфузии ткани или уменьшения напряжения кислорода в крови. Накопление лактата может уменьшить рН крови и снизить концентрацию бикарбоната, приводя к метаболическому ацидозу.
Источник
ЛЕКЦИЯ №3. ГУМОРАЛЬНЫЕ ФАКТОРЫ ВРОЖДЕННОГО ИММУНИТЕТА
Содержание
1. Воспалительные белки острой фазы воспаления:
1. Система комплемента. Механизм действия
2. Интерлейкины. Механизм действия
3. Интерфероны. Механизм действия
4. Факторы некроза опухоли. Механизм действия
5. Колониестимулирующие факторы. Механизм действия
2. Защитные белки острой фазы воспаления:
1. С-реактивный белок (СРБ).
2. Сывороточный амилоидный А компонент (СААК).
3. α1-Антихимотрипсин.
4. Фибриноген.
5. Гаптоглобин (Гб).
6. α-Гликопротеин (α-Гп).
7. Церулоплазмин (Цп).
8. Лейкотриены (ЛТ).
Гуморальные факторы врожденного иммунитета – это группа механизмов, обозначенных как реакции острой фазы. Они развиваются при повреждении в острый период и особенно в тех случаях, когда повреждение приводит к активации иммунитета, системы крови и развитию воспаления.
Реакция острой фазы воспаления — радикальное изменение биосинтеза белков в печени. Понятие «белки острой фазы»объединяет до 30 белков плазмы крови, участвующих в воспалении.
Острофазные белки.Вырабатываются в гепатоцитах и клетках иммунной системы при остром воспалении. В интактном состоянии они содержатся в сыворотке крови в небольших концентрациях, при остром воспалении их концентрация возрастает кратно ( в 2 – 1000 раз).
Острофазные белки условно делятся на две группы:
1. Воспалительные (цитокины):
1. Система комплемента. Механизм действия
2. Интерлейкины. Механизм действия
3. Интерфероны. Механизм действия
4. Факторы некроза опухоли. Механизм действия
5. Колониестимулирующие факторы. Механизм действия
2. Защитные:
1. С-реактивный белок (СРБ).
2. Сывороточный амилоидный А компонент (СААК).
3. α1-Антихимотрипсин.
4. Фибриноген.
5. Гаптоглобин (Гб).
6. α-Гликопротеин (α-Гп).
7. Церулоплазмин (Цп).
8. Лейкотриены (ЛТ).
Функции белков острой фазы воспаления:
1. Обеспечивают развитие воспаления;
2. Стимулируют фагоцитоз чужеродных начал;
3. Нейтрализуют свободные радикалы;
4. Разрушают потенциально опасные для тканей белки и т.д.
Действие этих систем подчиняется принципам:
· Принцип каскада
· Принцип сети
Каскадный принцип —при активации системы происходит последовательное вовлечение факторов.
Принцип сети — одновременное функционирование различных компонентов системы. путем взаимосвязи, взаимного влияния и взаимозаменяемости компонентов сети.
ВОСПАЛИТЕЛЬНЫЕ БЕЛКИ ОСТРОЙ ФАЗЫ ВОСПАЛЕНИЯ
СИСТЕМА КОМПЛЕМЕНТА
Система комплемента – Это каскадная система белков-ферментов, предназначенная для гуморальной защиты организма от действия чужеродных агентов
Термин «комплемент» ввёл Пауль Эрлих в конце 1890-х годов. Эрлих назвал систему белков «комплементом» потому, что этот компонент крови «служит дополнением» к клеткам иммунной системы.
Функции системы комплемента: Сывороточные белки, которые в норме находятся в неактивном состоянии: вызывают перфорацию мембран и лизис клеток, обеспечивают опсонизацию микроорганизмов для их дальнейшего фагоцитоза и инициируют развитие сосудистых реакций воспаления
Пути активации комплемента. Существуют два основных пути активации комплемента:
Классический
Альтернативный.
Механизм действия системы комплемента:
Классический путь.
При появлении во внутренней среде микробных продуктов запускается процесс, который называют активацией комплемента. Активация протекает по типу каскадной реакции, когда каждый предшествующий компонент системы активирует последующий.
¾ Связывание антител с поверхностью антигена запускает каскад системы комплемента:
¾ При встрече антигена и антитела образуется комплекс белков С1.
¾ К ним присоединяются белки С2 и С4
¾ К ним присоеденяется белок С3 конвертаза. С3 является центральным компонентом этого каскада. Его активация путем расщепления представляет собой главную реакцию всей цепи активации комплемента.
¾ При гидролизе С3 образуются фрагменты белков С3б и С3а.
¾ К ним присоеденяются белки С5
¾ Белки С5 и С6 связываются с мембраной клетки антигена, к ним присоединяются белки С7, С8, С9. Эти белки образуют мембраноатакующий комплекс, который образует в мембране антигена пору. Через эту пору мембраноатакующий комплекс проходит в тело антигена и лизирует (разрушает) антиген.
Альтернативный путь.
При встрече антигена и антитела образуется комплек белков С3, исключая фазу присоединения белков С1, С2 и С4.Этот путь быстрого реагирования иммунной системы, необходимый в экстремальных мситуациях.
2. ИНТЕРЛЕЙКИНЫ (ИЛ) — цитокины, ответственные за межклеточные взаимодействия между лейкоцитами. Описано около 20 интерлейкинов.
Механизм действия интерлейкинов:
¾ Активность интерлейкинов проявляется только после взаимодействия (связывания) их со своими рецепторами, расположенными на поверхности макрофагов и Т- и В-лимфоцитов.
¾ В течение нескольких часов после воздействия микробного антигена запускается каскад синтеза интерлейкинов, регулирующих функции иммунокомпетентных клеток,
¾ Через 2 ч после антигенной стимуляции начинается выделение функционально активных интерлейкинов из клеток во внеклеточное пространство. Максимальный уровень их секреции регистрируют через 24-48 ч, после чего их уровень снижается.
¾ Под действием пусковых провоспалительных интерлейкинов в очаге воспаления происходит активация разных типов лейкоцитов, клеток другого происхождения — эндотелиоцитов, фибробластов, кератиноцитов и др.
¾ Воздействие интерлейкиновусиливает основные функции нейтрофилов, макрофагов, натуральных киллеров, Т- и В-лимфоцитов, индуцирует выброс гистамина базофилами и тучными клетками, синтез ПГЕ2 кератиноцитами и другими клетками.
¾ Таким образом, именно через интерлейкины происходит формирование вторичного иммунного ответа. При этом в организме не только осуществляется интегрирование различных элементов системы иммунитета, но и возникает системная реакция острой фазы.
Пролиферация B клеток под действием цитокинов T клетокПролиферация B клеток под действием цитокинов T клеток
3. ИНТЕРФЕРОНЫ (IFN) —ряд белков, выделяемых клетками организма в ответ на вторжение вируса. Благодаря интерферонам, клетки становятся невосприимчивыми по отношению к вирусу. Интерфероны человека подразделяют на группы в зависимости от типа клеток, в которых они образуются: α, β и γ.
Механизм действия интерферона:
¾ При заражении клетки вирус начинает размножаться.
¾ Клетка-хозяин одновременно с этим начинает продукцию интерферона, который выходит из клетки и вступает в контакт с соседними клетками.
¾ Интерферон вызывает изменения в клетках, которые препятствуют размножению вируса, формированию вирусных частиц и дальнейшему его распространению.
Интерферон действует в нескольких направлениях.
1 направление влияния интерферона:
Оказывает влияние на клетки, соседние с инфицированной, запуская в них цепь событий, приводящих к подавлению синтеза вирусных белков и в некоторых случаях сборки и выхода вирусных частиц.
¾ В ответ на воздействие интерферона клетки вырабатывают большое количество протеинкиназы. В результате уровень белкового синтеза в клетке снижается.
¾ После протеинкиназы активируется синтез рибонуклеазы, которая расщепляет клеточные РНК и ещё больше снижает уровень белкового синтеза.
¾ Интерферон угнетает распространение вирусных частиц путём активации белка p53, что ведёт к апоптотической смерти инфицированной клетки.
2 направление влияния интерферона:
Стимуляция иммунной системы для борьбы с вирусами:
¾ Интерферон повышает синтез молекул главного комплекса гистосовместимости I и II классов и активирует иммунопротеасому, которые обеспечивают презентацию вирусов цитотоксическим Т-лимфоцитам и натуральным киллерам
¾ Высокий уровень молекул главного комплекса гистосовместимости II класса обеспечивает презентацию вирусных антигенов Т-хелперам. Т-хелперы, в свою очередь, выделяют цитокины, которые координируют активность других клеток иммунной системы.
4. ФАКТОР НЕКРОЗА ОПУХОЛИ (ФНО). Фактор некроза опухоли синтезируется моноцитами-макрофагами и Т-лимфоцитами. Ему присуще свойства цитотоксичекого действия на определенные клетки опухолей, путем геморрагического некроза.
Механизм действия:
¾ Цитотоксическое действие ФНО на опухолевую клетку связано с деградацией ДНК и нарушением функционирования митохондрий.
¾ ФНО-альфа убивает раковые клетки за счет запуска процесса апоптоза и оксидантного действия молекул кислорода и окиси азота.
5. КОЛОНИЕСТИМУЛИРУЮЩИЕ ФАКТОРЫ (КСФ). Регулируют деление, дифференцировку костно-мозговых стволовых клеток и предшественникон клеток крови. Стимулируют дифференцировку и функциональную активность некоторых клеток вне костного мозга.
Механизм действия:
1. Гранулоцитарный КСФ (Г-КСФ) продуцируется в основном макрофагами, а также фибробластами. Стимулирует деление и дифференцировку стволовые клеток, в некоторой степени усиливает активность нейтрофилов и эозинофилов.
2. Макрофагальный КСФ (М-КСФ) вырабатывается моноцитами, в меньшей степени эндотелиальными клетками и фибробластами. Активирует пролиферации предшественников макрофагов в костном мозге.
3. Гранулоцитарно-макрофагальный КСФ (ГМ-КСФ) продуцируется макрофагами И Т-лимфоцитами, а также фибробластами и эндотелиоцитами. Стимулирует деление и дифференцировку предшественников гранулоцитов и макрофагов, активирует функцию макрофагов и гранулоцитов, пролиферацию Т-клеток. Участвует в стимуляции дифференцировки кроветворных предшестенников Е антигенпрезентирующие дендритные клетки.
ЗАЩИТНЫЕ БЕЛКИ ОСТРОЙ ФАЗЫ ВОСПАЛЕНИЯ
1. С-реактивный белок (СРБ). СРБ — это компонент неспецифического иммунного ответа, который встречается на ранних стадиях после проникновения антигена в организм.
Механизм действия:
¾ СРБ связывает полисахариды, присутствующие на поверхности многих бактерий, грибов и паразитов.
¾ СРБ присоединяется к мембранам микроорганизмов и поврежденным клеткам.
¾ Связанный СРБ способствует фагоцитозу путем активации каскада комплемента по классическому пути.
¾ Активация комплемента увеличивает разрушение связанных структур.
¾ СРБ также взаимодействует с иммуноглобулинами, связанными с лимфоцитами.
¾ СРБ способен активировать тромбоциты.
¾ Основное значение СРБ заключается в распознавании потенциально токсических веществ, образующихся при распаде собственных клеток организма, связывании их и затем детоксикации и удалении из крови.
2. Сывороточный амилоидный А компонент (СААК). Функционально СААК представляют собой небольшие аполипопротеины
Механизм действия:
¾ При развитии острой фазы воспаления СААК соединяются с ЛПВП.
¾ Далее СААК увеличивает связывание ЛПВП с макрофагами, которые могут затем поглощать холестерин и липидные осколки в местах некроза.
¾ Другой предполагаемой защитной ролью САА является ингибирование активации тромбоцитов, а также ингибирование кислородного «взрыва» в нейтрофилах, что предотвращает повреждение тканей кислородными продуктами.
3. α1-Антихимотрипсин. α1-Антитрипсин (α1-антипротеазный ингибитор, α1-АПИ). Составляет 90% общей антипротеолитической активности плазмы.
Механизм действия:
¾ Является ингибитором ряда протеаз (коллагеназы, катепсина, химазы, эластазы), продуцируемых лейкоцитами.
¾ α1-АПИ подавляет активность химотрипсина, трипсина, бактериальных и гранулоцитарных протеиназ.
¾ α1-АПИ является важным регулятором и контролером активности эластазы, коллагеназы в месте воспаления, выход которых из-под контроля способно привести к деструкции окружающих тканей.
4. Фибриноген. Относится к классу β-глобулинов.
Механизм действия:
¾ Наиболее значимой функцией фибриногена является участие в формировании тромба и остановке кровотечения. Под влиянием тромбина он превращается в фибрин. Повышенная концентрация фибриногена и фибрина в поврежденной ткани усиливает миграцию в нее гранулоцитов.
¾ В интерстициальной ткани фибриноген формирует основу для роста фибробластов и гистиоцитов, что важно для восстановления поврежденной ткани.
¾ Продукты деградации фибриногена и фибрина обладают противосвертывающей активностью, способны подавлять процесс формирования фибрина. Это способствует восстановлению кровотока в поврежденной ткани и усиливает его дренажные функции.
¾ Фибриноген способен действовать как опсонины, а также вызывать склеивание микроорганизмов.
¾ Фрагменты фибриногена – фибринопептиды А и В проявляют противовоспалительные свойства.
5. Гаптоглобин (Гб). Составляет около 25% общей массы глобулинов.
Механизм действия:
¾ Основной функцией белка является связывание гемоглобина, растворенного в плазме, с образованием комплекса гемоглобин-гаптоглобин, что обеспечивает сохранение железа в организме.
¾ Гаптоглобин удаляет свободный гемоглобин из зоны воспаления.
¾ Обладает антипротеазной и пероксидазной активностью, что является важным для инактивации вторгшихся микроорганизмов.
¾ Гб участвует в детоксикации организма. Он способен образовывать комплексы с различными белковыми и небелковыми веществами, образующимися при распаде тканей и гибели клеток. Способен инактивировать протеиназы, выделяемые гранулоцитами в межклеточное пространство при их гибели .
6. α-Гликопротеин (α-Гп). Белок плазмы крови, содержащий в своем составе около 40% углеводов.
Механизм действия:
¾ Полисахаридный компонент обуславливает его способность взаимодействовать с клеточными мембранами многих клеток.
¾ α-Гп проявляет антипротеазную способность и активность в подавлении агрегации тромбоцитов.
¾ ГП проявляет умеренные иммунодепрессивные свойства. Способен подавлять реактивность Т-клеток, антителообразование, хемотаксис, моноцитоз, фагоцитоз.
7. Церулоплазмин (Цп).Относится к классу α2-глобулинов.
Механизм действия:
¾ Является основным транспортером меди.
¾ Цп способен к некаталитическому удалению свободных радикалов кислорода из тканей, способен окислять ароматические фенолы, полиамины, железо.
¾ Цп также участвует в удалении железа, высвобождающегося из гемоглобина эритроцитов в месте воспаления, таким образом не допуская поглощение этого элемента микробами. Участвует в обмене ряда биологически активных веществ, например, серотонина, аскорбиновой кислоты.
8. Лейкотриены (ЛТ). (LT) являются производными полиеновых кислот.
Механизм действия:
¾ Лейкотриены принимают участие в воспалительных реакциях, выступая в роли медиаторов аллергических реакций немедленного типа, которые появляются в ответ на аллерген.
¾ Является мощным активатором нейтрофилов: повышает их миграционную активность, фагоцитоз, адгезию на эндотелии сосудов, индуцирует дегрануляцию
Дата добавления: 2016-12-03; просмотров: 2030 | Нарушение авторских прав | Изречения для студентов
Читайте также:
Рекомендуемый контект:
Поиск на сайте:
© 2015-2020 lektsii.org — Контакты — Последнее добавление
Источник