Биохимические и физико химические изменения в очаге воспаления

В зависимости от доминирующего местного процесса различают 3 вида воспаления:

1. Альтеративное — преобладание процессов повреждения, дистрофии, некроза.

2.Экссудативное — характеризуется выраженным нарушением крово­обращения с явлениями экссудации и эмиграции лейкоцитов.

3.Пролиферативное или продуктивное — характеризуется размножени­ем клеток гематогенного и гистогенного происхождения с развитием клеточ­ных инфильтратов.

В зависимости от длительности течения различают:

1.Острое воспаление, характеризующееся интенсивным развитием и разрешением процесса в течение 1-2 недель, умеренными явлениями альте­рации, экссудации и пролиферации.

2. Хроническое воспаление, характеризующееся затяжным, вялым те­чением с длительной персистенцией альтеративных и экссудативных изме­нений и выраженной пролиферацией.

АЛЬТЕРАЦИЯ

Комплекс изменений, вызванных непосредственным действием повре­ждающего агента, называют первичной альтерацией. Действие флогогенно­го фактора зависит от его природы, однако можно выделить несколько базо­вых механизмов повреждения, присущих многим флогогенам. Эти механиз­мы включают повреждение структуры мембран или нарушение их функции, нарушение функций внутриклеточных ферментов, а также повреждение структур межклеточного вещества. Так как воздействие этиологического фактора распределяется неравномерно, часть клеток гибнет, а часть адапти­руется и играет важную роль в последующем воспалении и репарации ткани.

Вторичная альтерация. Продукты, возникающие в результате дест­рукции клеток при первичной альтерации и производимые клетками-участниками воспаления, могут вызвать вторичное самоповреждение тканей. Многие факторы вторичной альтерации являются также важнейшими факто­рами антимикробной защиты, действующими внутри фаголизосом нейтрофилов и макрофагов. Однако эти агенты не обладают специфичностью, и, попадая во внеклеточное пространство, они могут оказывать цитолитический эффект на собственные клетки организма и разрушать структуры межклеточ­ного вещества. Основными факторами вторичной альтерации являются:

1.Гидролитические ферменты лизосом (нейтральные и кислые протеазы, липазы, гликозидазы, фосфатазы). При некрозе клеток целостность их мембран нарушается, и внутриклеточное содержимое, в том числе лизосомальные ферменты, поступает в интерстициальное пространство.

Другим ис­точником лизосомальных гидролаз в очаге воспаления являются фагоциты, выделяющие их при гибели и дегрануляции. Нейтральные протеазы (коллагеназа, эластаза, катепсин) разрушают коллаген, эластин и фибриллин меж­клеточного вещества, базальные мембраны, а также способны прямо активи­ровать компоненты комплемента СЗ и С5, гидролизуя их до СЗа и С5а. Кис-

лые протеазы разрушают гликопротеины и протеогликаны, а гликозидазы (гиалуронидаза и др.) — гликозаминогликаны основного вещества соедини­тельной ткани и компоненты клеточных стенок бактерий. Липазы и фосфолипазы повреждают липиды клеточных мембран.

2. Активные кислородные радикалы (АКР) и оксид азота (NO). Повре­ждение клеток сопровождается повреждением мембран митохондрий, пероксисом, ГЭР в результате чего АКР, продуцируемые этими органеллами по­ступают в цитоплазму и далее в интерстиций. АКР также являются важными бактерицидными факторами фагоцитов и активно продуцируются этими клетками. Наконец, N0 продуцируется эндотелиоцитами и макрофагами и выделяется во внеклеточ­ное пространство, где может трансформироваться в пероксинитрит — крайне реакционноспособный свободный радикал. Действие всех свободных ради­калов заключается в перекисном окислении липидов, что нарушает структуру и функции клеточных мембран, ковалентных модификациях белков и нук­леиновых кислот .

3. Продукты активации комплемента. Конечным этапом активации сис­темы комплемента является образование мембраноатакующего комплекса (МАК), который встраивается в мембрану клетки-мишени и формирует в ней канал, что приводит к гибели клетки. Как и большинство эффекторных защитных систем, компле­мент не обладает специфичностью, поэтому может атаковать собственные клетки организма.

Важную роль в развитии вторичной альтерации играют также гипок­сия, ацидоз и расстройства осмотического баланса, развивающиеся в очаге воспаления в результате изменений микроциркуляции и метаболизма в очаге воспаления.

Биохимические и физико-химические изменения в очаге воспале­ния

Изменения метаболизма в очаге воспаления могут быть охарактеризо­ваны как «пожар обмена». Они развиваются в следствие действие флогоген­ного фактора и вторичных расстройств в тканях, выражающихся в пере­стройке местных механизмов нервной и гуморальной регуляции, микроцир­куляции, формировании физико-химических сдвигов. В очаге воспаления на­блюдаются закономерные фазные изменения обмена веществ, направленные на энергетическое и пластическое обеспечение местных адаптивных и за­щитных реакций. На начальном этапе воспаления в ткани преобладают реак­ции катаболизма, затем — при активации процессов пролиферации, — начина­ют доминировать анаболические реакции.

Метаболизм углеводов в очаге воспаления характеризуется преоблада­нием гликолиза. Это обусловлено повреждением мембран и снижением ак­тивности ферментов митохондрий. При этом увеличение поглощения тканью кислорода 30-35%, характерное для начальных этапов воспаления, сопрово­ждается снижением окисления глюкозы. Активация гликогенолиза и глико­лиза сопровождается уменьшением продукции АТФ, накоплением пирувата и лактата, и развитием ацидоза.

В метаболизме липидов доминируют процессы липолиза. Это обуслов­лено, в основном, интенсификацией гидролиза липидов липазами и фосфолипазами, высвобождающимися из поврежденных клеток, а также лейкоци­тов. Усиливаются и процессы перекисного окисления липидов. Следствиями подобной направленности липидного обмена являются накопление в очаге воспаления свободных высших жирных кислот, обладающих детергентным действием и повреждающих мембраны; накопление токсичных кетокислот (ацетоуксусной, β-оксимасляной, β-кетоглутаровой); накопление липоперекисей; активация продукции метаболитов арахидоновой кислоты.

Белковый обмен характеризуется повышением процессов протеолиза в результате накопления в очаге воспаления большого количества протеолити-ческих ферментов.

Физико-химические нарушения в очаге воспаления

В очаге воспаления накапливаются ионы водорода, что приводит к снижению рН в клетках и межклеточной жидкости и, следовательно, разви­тию ацидоза. Причинами метаболического ацидоза являются: образование большого количества недоокисленных продуктов в результате активации гликолиза, нарушение дренажа тканей, в результате изменения микроцирку­ляции, и истощение буферных систем клеток и межклеточной жидкости (бикарбонатной, фосфатной, белковой). Следствиями ацидоза являются: повы­шение проницаемости мембран, активация лизосомальных ферментов, по­вышение проницаемости сосудистых стенок в результате неферментативного гидролиза компонентов базальных мембран, изменения чувствительности рецепторов (особенно адренорецепторов, что приводит к снижению вазоконстрикторных влияний).

Читайте также:  Кошке при воспалении почек

Характерно повышение осмотического и онкотического давления в очаге воспаления (гиперосмия, гиперонкия). Причины повышения осмотиче­ского давления: гидролиз макромолекул с образованием низкомолекулярных дериватов, выход ионов из поврежденных и разрушенных клеток. Гиперонкия развивается в результате увеличения концентрации белка в очаге воспа­ления, который поступает из разрушенных клеток, а также из крови при по­вышении сосудистой проницаемости. Последствия гиперонкии и гиперос­мии: гипергидратация очага воспаления и развитие отека.

Источник

Комплекс физико-химических изменений включает в себя ацидоз (вследствие нарушения тканевого окисления и накопления в тканях недоокисленных продуктов. Сначала он компенсируется буферными механизмами, затем становится декомпенсированным. В результате рН экссудата снижается. Наряду с повышенной кислотностью в воспаленной ткани повышается осмотическое давлениеми), гиперионию (накопления в очаге В. ионов К+, Cl-, НРО4 из гибнущих клеток), дисионию (изменения соотношения между отдельными ионами, например, увеличение К+/Са2+ коэффициента), гиперосмию, гиперонкию (обусловлена увеличением концентрации белка, его дисперсности и гидрофильности).

Транспорт жидкости в ткани зависит от физико-химических изменений, происходящих по обе стороны сосудистой стенки. В связи с выходом белка из сосудистого русла, его количество вне сосудов увеличивается, что способствует повышению онкотического давления в тканях. При этом в очаге В. происходит под влиянием лизосомальных гидролаз расширение белковых и других крупных молекул на более мелкие. Гиперонкия и гиперосмия в очаге альтерации создают приток жидкости в воспаленную ткань. Этому способствует и повышение внутрисосудистого гидростатического давления в связи с изменениями кровообращения в очаге В.

57. Сосудистые реакции, динамика нарушений периферического кровообращения в очаге воспа­ления, биологическое значение.

Динамика сосудистых реакций и изменения кровообращения при развитии В. стереотипа: вначале возникает кратковременный рефлекторный спазм ортериол и прекапилляров с замедлением кровотока, затем, сменяя друг друга, развивается артериальная и венозная гиперемия, престаз и стаз – остановка кровотока.

Артериальная гиперемия является результатом образования в очаге В. большого количества вазоактивных веществ – медиаторов В., которые подавляя автоматию гладкомышечных элементов стенки артериол и прекапилляров, вызывают их расслабление. Это приводит к увеличение притока артериальной крови, ускоряет ее движение, открывает ранее не функционировавшие капилляры, повышает в них давление. Кроме того, приводящие сосуды расширяются в результате “паралича” вазоконстрикторов и доминирования парасимпатических влияний на стенку сосудов, ацидоза, гиперкалийионии, снижения эластичности окружающей сосуды соединительной ткани.

Венозная гиперемия возникает вследствие действия ряда факторов, которые можно разделить на три группы: 1) факторы крови, 2) факторы сосудистой стенки, 3) факторы окружающих тканей. К факторам, связанным с кровью, относится краевое расположение лейкоцитов, набухание эритроцитов, выход жидкой части крови в воспаленную ткань и сгущение крови, образование микротромбов вследствие активации фактора Хагемана и уменьшении содержания гепарина.

Влияние факторов сосудистой стенки на венозную гиперемию проявляется набуханием эндотелия, в результате чего просвет мелких сосудов еще больше суживается. Измененные венулы теряют эластичность и становятся более податливыми сдавливающему действию инфильтрата. И, наконец, проявление тканевого факторов состоит в том, сто отечная ткань, сдавливая вены и лимфатические сосуды, способствует развитию венозной гиперемии.

С развитием престатического состояния наблюдается маятникообразное движение крови – во время систолы она движется от артерий к венам, во время дистолы – в противоположном направлении. Наконец, движение крови может полностью прекратиться и развивается стаз, следствием которого могут быть необратимые изменения клеток крови и тканей.

58. Экссудация, определение понятия. Причины и механизмы повышения проницаемости сосуди­стой стенки в очаге воспаления. Значение экссудации при воспалении. Виды экссудатов.

Выход жидкой части крови в интерстиций очага В. – собственно экссудацияпроисходит вследствие резкого повышения проницаемости гистогематического барьера и как следствие усиления процесса фильтрации и микровезикулярного транспорта. Выход жидкости и растворенных в ней веществ осуществляется в местах соприкосновения эндотелиальных клеток. Щели между ними могут увеличиваться при расширении сосудов, при сокращении контрактильных структур и округлении эндотелиальных клеток. Кроме того, клетки эндотелия способны “заглатывать” мельчайшие капельки жидкости (микропиноцитоз), переправлять их на противоположную сторону и выбрасывать в близлежащую среду (экструзия).

Транспорт жидкости в ткани зависит от физико-химических изменений, происходящих по обе стороны сосудистой стенки. В связи с выходом белка из сосудистого русла, его количество вне сосудов увеличивается, что способствует повышению онкотического давления в тканях. При этом в очаге В. происходит под влиянием лизосомальных гидролаз расширение белковых и других крупных молекул на более мелкие. Гиперонкия и гиперосмия в очаге альтерации создают приток жидкости в воспаленную ткань. Этому способствует и повышение внутрисосудистого гидростатического давления в связи с изменениями кровообращения в очаге В.

Читайте также:  Воспаление придатков при цистите

Результатом экссудации является заполнение интерстициальных пространств и очага В. экссудатом. Экссудат отличается от трансудата тем, что содержит большее количество белков (не менее 30 г/л), протеолитических ферментов, иммуноглобулинов. Если проницаемость стенки сосудов нарушена незначительно, то в экссудат, как правило, проникают альбумины и глобулины. При сильном нарушении проницаемости из плазмы в ткань поступает белок с большей молекулярной массой (фибриноген). При первичной, а затем и вторичной альтерации проницаемость сосудистой стенки увеличивается на столько, что через нее начинают проникать не только белки, но и клетки. При венозной гиперемии этому способствует расположение лейкоцитов вдоль внутренней оболочки мелких сосудов и более или менее прочное их прикрепление к эндотелию (феномен краевого стояния лейкоцитов).

Раннюю транзиторную реакцию роста проницаемости сосудов обуславливает действие гистамина, ПГЕ, лейкотриена Е4, серотонина, брадикинина. Ранняя транзиторная реакция в основном затрагивает венулы с диаметром не более, чем 100 мкм. Проницаемость капилляров при этом не меняется. Действие экзогенных этиологических факторов механической (травма, ранение), термической или химической природы, вызывая первичную альтерацию, приводит к длительной реакции роста проницаемости. В результате действия этиологического фактора происходит некроз эндотелиалльных клеток на уровне артериол небольшого диаметра, капилляров и венул, что ведет к стойкому возрастанию их проницаемости. Отсроченная и стойкая реакция роста проницаемости микрососудов развивается в очаге В. через часы или сутки от его начала. Она характерна для В., вызванного ожогами, излучением и аллергическими реакциями отсроченного (замедленного) типа. Одним из ведущих медиаторов этой реакции является медленно реагирующая субстанция анафилаксии (МРСА), которая есть не что иное как лейкотриены и полиненасыщенные жидкие кислоты, которые образуются их арахидоновой кислоты и фактора активации тромбоцитов (ФАТ). МРСА в очаге В. образуют и высвобождают лаброциты. Стойкий рост проницаемости микрососудов в очаге В. МРСА обуславливает, вызывая протеолиз базальных мембран микрососудов.

Биологический смысл экссудации как компонента В. состоит в отграничении очага В. через сдавление кровеностных и лимфатических микрососудов вследствие интерстиналльного отека, а также в разведении флогогенов и факторов цитолиза в очаге В. для предотвращения избыточной вторичной альтерации.

Виды экссудатов:серозный, гнойный, геморрагический, фиброзный, смешанный экссудат

59. Стадии, пути и механизмы эмиграции лейкоцитов при воспалении. Основные хемоаттрактан­ты, обусловливающие миграцию лейкоцитов.

Эмиграция лейкоцитов (лейкодиапедез) – выход лейкоцитов из просвета сосудов ч/з сосудистую стенку в окружающую ткань. Этот процесс совершается и в норме, но при В. приобретает гораздо большие масштабы. Смысл эмиграции состоит в том, чтобы в очаге В. скопилось достаточное число клеток, играющих роль в развитии В. (фагоцитоз и т.д.).

В настоящее время механизм эмиграции изучен довольно хорошо. Эмиграция лейкоцитов в очаг В. начинается с их краевого (пристеночного) стояния (маргинация лейкоцитов), которое может продолжаться несколько десятков мин. Затем гранулоциты (через межэндотелиального щели) и агранулоциты (путем цитопемзисм – трансэндотелиального переноса) проходят через сосудистую стенку и продвагиются к объекту фагоцитирования. Лейкоциты выходят за пределы сосуда на стыке между эндотелиальными клетками. Это объясняется округлением эндотелиоцитов и увеличением интервалов между ними. После выхода лейкоцитов контакты восстанавливаются. Амебиодное движение лейкоцитов возможно благодаря обратимым изменениям состояния их цитоплазмы и поверхностного натяжения мембран, обратимой “полимеризации” сократительных белков – актина и миозина и использованию энергии АТФ анаэробного гликолиза. Направленное движение лейоцитов объясняется накоплением в очаге В. экзо- и эндогенных хемоаттрактантов – веществ индуцирующих хемотаксис, повышением температуры (термотаксис), а также развитием условий для гальвано- и гидромаксиса.

Функцию эндогенных хемоаттрактантов выполняют фракции системы комплемента, в особенности компонент С5а. Свойствами хемоаттрактантов обладают кинины и активированный фактор – Хагемана. Экзогенными хемоаттрактантами являются пептиды бактериального происхождения, в особенности те, которые содержат N-фармиловые группы.

В эмиграции лейкоцитов в очаг В. наблюдается определенная очередность: сначала эмигрируют нейтрофильные гранулоциты, моноциты, лимфоциты. Более позднее проникновение моноцитов объясняется их меньшей хемотаксической чувствительностью. После завершения воспалительного процесса в очаге наблюдается постепенное исчезновение клеток крови, начиная с тех лейкоцитов, которые появились раньше (нейтрофильные гранулоциты). Позже элиминируются лимфоциты и моноциты.

Клеточный состав экссудата в значительной степени зависит от этиологического фактора В. Так, если В. вызвано гноеродными микробами (стафилококки, стрептококки), то в вышедшей жидкости преобладают нейтрофильные гранулоциты, если оно протекает на иммунной основе (аллергия) или вызвано паразитами (гельминты), то наблюдается множество эозинофильных гранулоцитов. При хроническом воспалении (туберкулез, сифилис) в экссудате содержится большое число мононулеаров (лимфоциты, моноциты).

В очаге В. осуществляется активное движение лейкоцитов к химическим раздражителям – хемоаттрактантам в соответствии с градиентами их концентрации. Ориентированное движение клеток и организмов под влияеми химических раздражителей – хемоаттрактантов получило название – хемотаксис. В хемотаксисе лейкоцитов большое значение имеет система комплемента и прежде всего компоненты С3 и С5. Лейкотаксически активные компоненты системы комплемента С3 и С5 образуются в очаге В. под влиянием различных ферментов: трипсина, тромбина, плазмы, уровень которых в условиях альтерации возрастает.

Читайте также:  Атрофическое воспаление в матке

После взаимодействия хемоаттрактантов со своими рецепторами на поверхности нейтрофилов и активированных моноцитов, хаотическое движение фагоцитов прекращается. Фагоциты начинают ориентировано перемещаться по направлению к объекту эндоцитоза в соответствии с градиентами концентрации хемоаттрактантов, то есть становятся ориентированными. Процесс эмиграции может не только стимулироваться, но и подавляться. Рост содержания в очаге В. кортизола тормозит ориентированный хемотаксис нейтрофилов. Гиперкортизолемия, тормозящая миграцию ориентированных полиморфонуклеаров, направлена на предотвращение трансформации В. из защитной в патологическую реакцию.

60. Определение понятия и биологическая роль фагоцитоза (И.И. Мечников). Стадии фагоцито­за, механизмы бактерицидности фагоцитов. Причины и виды нарушения фагоцитоза. Наследственные дефекты фагоцитов.

Проникнув в очаг В., фагоциты выполняют свою главную фагоцитарную функцию

Фагоцитоз – защитно-приспособительная реакция организма, заключающаяся в узнавании, активном захвате (поглощении) и переваривании м/о, разрушенных клеток и инородных частиц специализированными клетками – фагоцитами. К ним относятся полиморфно-ядерные лейкоциты (в основном нейтрофилы), клетки системы фагоцититрующих мононуклеаров (моноциты, тканевые макрофаги), а также клетки Купфера в печени, мезангиальные клетки почек, глиальные клетки в ЦНС и др.

Рзличают четыре стадии фагоцитоа: приближение (хемотаксис), прилипание (аттракция, адгезия), захват фагоцитиремого объекта (поглощение), внутриклеточное переваривание. В процессе узнавания большую роль играют особые компоненты сыворотки крови, которые являются молекулярными посредниками при взаимодействии микробов с фагоцитами и обуславливающие усиление фагоцитоза – опсонины. К ним относят антитела IgGi, IgG3, IgM, иммуноглобулины IgAl, IgA2, термолабильные субкомпоненты комплемента. Основная роль при поглощении принадлежит сократительным белкам, способствующим образованию псевдоподий.

Поглощение объекта лейкоцитами может происходить двумя способами:

I) контактирующим с объектом участок цитоплазмы втягивается внутрь клетки, а вместе с ним втягивается и объект;

2) фагоцит прикасается к объекту своими длинными и тонкими псевдоподиями, а потом всем телом подтягивается в сторону объекта и обволакивает его. И в том и в другом случае инородная частица окружена плазматической мембраной и вовлечена внутрь клетки. В итоге образуется своеобразная гранула с инородным телом (фагосома). Затем фагосома приближается к лизосоме, их мембраны сливаются, образуется единая вакуоль, в которой находятся поглощенноая частица и лизосомальные ферменты (фаголизосома). В фаголизосомах начинается переваривание поглощенного объекта. Эффективность фагоцитоза возрастает, когда в процесс подключается так называемая кислородная система. При фагоцитозе повышается потребление кислорода, причем столь резкое, что его принято называть “респираторным взрывом”. Смысл столь резкого (до 10 раз) повышения потребления кислорода состоит в том, что он используется для борьбы с микроорганизмами. Происходит образование токсичных для микробов активных форм О2 – перекиси водорода, гидроксильных радикалов, супероксидного аниона, синглетного кислорода. Эти высокоактивные соединения вызывают перекисное окисление липидов, белков, нуклеиновых кислот, углеводов и при этом повреждают построенные из этих веществ клеточные структуры микроорганизмов.

В этой ситуации фагоцит и сам подвергается агрессивному действию названных веществ, но он обладает мощным механизмом, благодаря которому избыточного накопления активных форм кислорода не происходит. Защитную роль при этом играют прежде всего два фермента: глютатионпероксидаза и глютатионредуктаза, роль которых заключается в том, что первый переносит водород на окисленный глютатион, а второй – снимает этот водород и передает его на Н2О2, в результате чего образуются две молекулы воды.

Определенную роль играет каталаза, выводящие из клеток избыток перекиси водорода. Супероксидный анион обезвреживается особым ферментом — супероксиддисмутазой. У фагоцитов имеются и другие не связанные с кислородом (кислороднезависимые) механизмы борьбы с микроорганизмами. К ним относятся: лизоцим, разрушающий мембраны бактерий; лактоферрин, конкурирующий за ионы железа и, наконец, дефензины (белки со структурой насыщенной аргинином), катионные белки, нарушающие структуру мембран микроорганизмов. Совместное действие механизмов обеих групп приводит к разрушению объектов фагоцитоза.

Однако наряду с завершенным фагоцитозом в микрофагах наблюдается, например, при некоторых инфекциях фагоцитоз незавершенный или эндоцитобиоз, когда фагоцитированные бактерии или вирусы не подвергаются полному перевариванию, а иногда даже начинают размножаться в цитоплазме клетки. Эндоцитобиозобъясняют недостатком или даже отсутствием в лизосомах макрофагов антибактериальных катионных белков, что снижает переваривающую способность лизосмальных ферментов. Фагоцит, поглотивший бактерии, но не способный их переварить становится переносчиком инфекции по организму, способствует ее дессиминации.

Выявлены болезни, сопровождающиеся первичными (врожденными) или вторичными (приобретенными) дефектами фагоцитоза – “болезни фагоцитов”. К ним относится так называемая хроническая гранулематозная болезнь, возникающая у детей, в фагоцитах которых из-за дефекта оксидаз нарушено образование перекисей и, следовательно, процесс инактивации микробов. Сниженная спосбность к уничтожению бактерий выявлено у людей нейтрофилы которых синтезируют недостаточное количество миелопироксидазы, глукоза-6-фосфатдегидрогеназы, пируваткиназы.

Необходимо отметить, что особую роль в развитии учения о фагоцитозе сыграли исследования И.И.Мечникова. И.И.Мечников (1892) разработал учение о фагоцитозе и отвел ему важнейшую роль в динамике В. На основании своих наблюдений он построил биологическую теорию В. Он впервые рассмотрел воспалительный процесс с эволюционных позиций, заложил основы сравнительной патологии.

61. Стадия пролиферации, ее основные проявления и механизмы развития. Виды и исходы воспа­ления. Основные теории воспаления.

Источник