Активация системы комплемента при воспалении

Активация системы комплемента при воспалении thumbnail

Комплемент был открыт в 1899 г. французским имму­нологом Ж. Борде, назвавшим его «алекси­ном». Современное название комплементу дал П. Эрлих. Комплемент представляет со­бой сложный комплекс белков сыворотки крови, находящийся обычно в неактивном состоянии и активирующийся при соедине­нии антигена с антителом или при агрега­ции антигена. В состав комплемента входят 20 взаимодействующих между собой белков, девять из которых являются основными ком­понентами комплемента; их обозначают циф­рами: С1, С2, СЗ, С4… С9. Важную роль играют также факторы В, D и Р (пропердин). Белки комплемента относятся к глобулинам и отличаются между собой по ряду физико-химических свойств. В частности, они сущес­твенно различаются по молекулярной массе, а также имеют сложный субъединичный состав: C1 — C1q, C1r, Cls; С3 — С3а, С3b; С5 — С5а, С5b и т. д. Компоненты комплемента синтези­руются в большом количестве (составляют 5-10 % от всех белков крови), часть из них образуют фагоциты.

Система комплемента выполняет следующие функции:

а) лизис клеток (эритроцитов — гемолиз, бактерий — бактериолиз, клеток опухолей или поврежденных, инфицированных внутриклеточными формами бактерий, микоплазмами, хламидиями, вирусами или простейшими — цитолиз);

б) усиление или подготовка фагоцитоза (участие в процессе опсонизации);

в) усиление хемотаксиса;

г) участие в нейтрализации вирусов;

д) участие в иммуноприлипании;

е) участие в аллергических реакциях немедленного типа (анафилотоксины).

Механизм активации системы комплемента сложен и представляет собой каскад фер­ментативных протеолитических реакций, в результате которого образуется активный цитолитический (мембранно-атакующий) комплекс, разрушающий стен­ку бактерии и других клеток. Известны три пути активации комплемента: классический, альтернативный и лектиновый (рис. 19).

По классическому пути комплемент активирует­ся комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG. Процесс начинается с присоединения к ком­плексу АГ+АТ компонента С1, который рас­падается на субъединицы Clq, Clr и Cls. Далее в реакции участвуют последовательно активированные «ранние» компоненты комплемента в такой последовательности: С4, С2, СЗ. Эта реакция имеет характер усиливающе­гося каскада, т. е. когда одна молекула пре­дыдущего компонента активирует несколько молекул последующего. «Ранний» компонент комплемента СЗ активирует компонент С5, который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется мембранно-атакующий комплекс, который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.

Альтернативный путь активации комплемен­та проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при аль­тернативном пути начинается с взаимодействия антигена (например, липополисахарида) с протеи­нами В, D и пропердином (Р) с последующей активацией компонента С3. Далее реакция идет так же, как и при классическом пути — образу­ется мембранно-атакующий комплекс.

Примечания: С1-9 – компоненты комплемента; MBL – маннозо-связывающий лектин; MASP — маннозо-ассоциированные специфические белки, МК – мембрано-атакующий комплекс.

Рис. 19. Пути активации комплемента

Лектиновый путь активации комплемента также происходит без участия антител. Он ини­циируется маннозосвязывающим белком сыворотки крови, который после взаимодейс­твия с остатками маннозы на поверхности мик­робных клеток катализирует С4. Дальнейший каскад реакций сходен с классическим путем. В процессе активации комплемента обра­зуются продукты протеолиза его компонен­тов — субъединицы С3а и С3 b, С5а и С5 b и дру­гие, которые обладают высокой биологической активностью. Например, С3а и С5а принимают участие в анафилактических реакциях, являют­ся хемоаттрактантами, С3b — играет роль в опсонизации объектов фагоцитоза, и т. д. Сложная каскадная реакция активации системы комплемента происходит с участием ионов Са2+ и Mg2+.

  1. Определение понятия «антиген». Свойства антигенов. Виды антигенов.

Антиген(от греч. anti — против и genos — создавать) — это биополимер органичес­кой природы, генетически чужеродный для макроорганизма, который при попадании в последний распознается его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

Свойства антигенов:

антигенность — потенциаль­ная способность молекулы антигена акти­вировать компоненты иммунной системы и специфически взаимодействовать с фактора­ми иммунитета (антитела, клон эффекторных лимфоцитов);

иммуногенность — потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию (иммунный ответ).

Степень иммуногенности зависит от молекулярных особенностей антигена (природа, химический состав, молекулярный вес, струк­тура), клиренса антигена в организме, реактивности макроорганизма.

специфичность — способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу.

Способностью вызывать развитие иммунного ответа и определять его специфичность обладает фрагмент молекулы Аг – антигенная детерминанта (эпитоп), избирательно реагирующая с Аг-распознающими рецепторами и Ат.

Классификация по происхождению:

экзоген­ные (возникшие вне организма);

эндоген­ные (возникшие внутри организма) антигены.

аутогенные – это эндоген­ные антигены, структурно неизмененные молекулы собственного организма, синтези­руемые в физиологических усло­виях. В норме аутоантигены не вызывают ре­акцию иммунной системы вследствие сформи­ровавшейся иммунологической толерантности(невосприимчивости) либо их недоступности для контакта с факторами иммунитета — это так называемые забарьерныеантигены (головной мозг, хрусталик глаза, фолликулы щитовидной железы, семенные канальца яичек). При срыве толерантности или нарушении целост­ности биологических барьеров (наиболее час­тая причина — травма) компоненты иммунной системы начинают специфически реагировать на аутоантигены выработкой специфических факторов иммунитета (аутоантитела, клон аутореактивных лимфоцитов).

неоан­тигены (опухолевые) – это эндоген­ные антигены, которые возникают в организме в результате мутаций. После модификации мо­лекулы приобретают черты чужеродности.

Классификация по природе: биополимеры белковой (протеиды) и небелковой природы (полиса­хариды, липиды, липополисахариды, нуклеи­новые кислоты и пр.).

Классификация по молекулярной структуре:

глобуляр­ные (молекула имеет шаровидную форму);

фибриллярные (форма нити).

Классификация по степени иммуногенности:

полноценные ан­тигены — обладают выраженной антигенностью и иммуногенностью — иммунная система чувствительного организма реагирует на их введение выработкой факторов иммунитета. Такие вещества, как правило, имеют доста­точно большую молекулярную массу (более 10 кДа), большой размер молекулы (частицы) в виде глобулы и хорошо взаимодействуют с факторами иммунитета;

неполноценные антигены, или гаптеныне способны при введении в нормальных условиях индуцировать в организме иммунный ответ, так как обладают крайне низкой иммуногенностью. Однако свойство антигенности они не утратили, что позволяет им специфически взаимодейс­твовать с уже готовыми факторами иммунитета (антителами, лимфоцитами). Чаще всего гаптенами являются низкомолекулярные соединения (молекулярная масса меньше 10 кДа). При соединении гаптена с белковой молекулой, образовавшийся конъюгат обладает всеми свойствами полноценного антигена и вызы­вает при введении в организм выработку ан­тител или клона лимфоцитов, специфичных к гаптенной части комплекса. При этом спе­цифичность в составе молекулы конъюгата определяется гаптенной частью, а иммуногенность — белком-носителем. Молекула бел­ка-носителя назввается шлеппер(от нем. schlepper — буксир).

Классификация по степени чужеродности:

ксеногенные антигены (гетерологичные) — общие для организмов, стоящих на разных ступенях эволюционного развития, например, относящиеся к разным родам и видам. Примером может быть полисахаридный антиген Форсмана, присутствующий в эритроцитах кошек, собак, овец и почке морских свинок.

аллогенные антигены (групповые) — об­щие для генетически неродственных орга­низмов, но относящихся к одному виду. На основании аллоантигенов общую популяцию организмов можно подразделить на отдельные группы. Примером таких антигенов у людей являются антигены крови (системы АВО, HLA и др.). Аллогенные ткани при трансплантации иммунологически несов­местимы — они отторгаются или лизируются реципиентом. Микробы на основании груп­повых антигенов могут быть подразделены на серогруппы, что имеет большое значение для микробиологической диагностики (например, классификация сальмонелл Кауфмана-Уайта).

изогенные антигены (индивидуаль­ные) — общие только для генетически иден­тичных организмов, например для однояйцо­вых близнецов, инбредных линий животных. Изотрансплантаты обладают практически полной иммунологической совместимостью и не отторгаются реципиентом при пересадке. Примером таких антигенов в популяции лю­дей являются антигены гистосовместимости, а у бактерий — типовые антигены, не дающие дальнейшего расщепления.

Читайте также:  Как снять воспаление щитовидки в домашних условиях

Классификация по направленности активации и обеспе­ченности иммунного реагирования:

иммуногеныпри попадании в организм спо­собны индуцировать продуктивную защитную реакцию иммунной системы, которая заканчивается выработкой факторов иммунитета (антите­ла, антигенореактивные клоны лимфоци­тов). В клинической практике иммуногены используют для иммунодиагностики, имму­нотерапии и иммунопрофилактики многих патологических состояний;

толерогенявляется полной противополож­ностью иммуногену. При взаимодействии с системой приобретенного иммунитета он вы­зывает включение альтернативных механиз­мов, приводящих к формированию иммуноло­гической толерантности или неотвечаемости на эпитопы данного толерогена. Толерогену, как правило, присуща мономер­ность, низкая молекулярная масса, высокая эпитопная плотность и высокая дисперсность (безагрегатность) коллоидных растворов. Толерогены используют для профилактики и лечения иммунологических конфликтов и ал­лергии путем наведения искусственной неот­вечаемости на отдельные антигены;

аллергенпроизводимый им эффект, в отли­чие от иммуногена, формирует патологическую реакцию организ­ма в виде гиперчувствительности немедлен­ного или замедленного типа. По своим свойствам аллерген не отличается от иммуногена. В клинической практике ал­лергены применяют для диагностики инфек­ционных и аллергических заболеваний.

Антигены организма человека.С позиций клинической медицины наиболь­ший значение имеет определение группоспецифических антигенов (антигены групп крови), индивидуально специфических антигенов (антигены гисто­совместимости), органо- и тканеспецифических (раковоэмбриональные антигены).

Антигены гистосовместимости обнаружива­ются на цитоплазматических мембранах практи­чески всех клеток макроорганизма. Большая часть из них относится к системе главного ком­плекса гистосовместимости, или МНС (от англ. Main Hystocompatibility Complex). У человека МНС обозначается как HLA (от англ. Human Leukocyte Antigen), так как он ассоциирован с лейкоци­тами. Антигены гистосовместимости играют ключевую роль в осуществлении специфичес­кого распознавания «свой-чужой» и индук­ции приобретенного иммунного ответа. Они определяют совместимость органов и тканей при трансплантации в пределах одного вида, генетическую рестрикцию (ограничение) иммунного реагирования и другие эффекты. По химической природе анти­гены гистосовметимости представляют собой гликопротеиды, прочно связанные с цитоплазматической мембраной клеток. Их отдельные фрагменты имеют структурную гомологию с молекулами иммуноглобулинов. Различают два основных класса молекул МНС. Условно принято, что МНС I класса индуцирует преиму­щественно клеточный иммунный ответ, а МНС II класса — гуморальный.

Локус МНС I класса включает сублокусы HLA-A, HLA-B и HLA-C, их гены наследуются и проявляются независимо. Процесс формирования комплекса «МНС I класса-антиген» протекает непрерывно в эндоплазматическом ретикулуме. В его состав включаются любые эндогенно синтезированные пептиды, в том числе вирусные. Этот комплекс экспрессируются на поверхности практически всех клеток, кроме эритроцитов (в безъядерных клетках отсутс­твует биосинтез) и клеток ворсинчатого трофобласта («профилактика» отторжения пло­да). Экспрессия молекул заметно усиливается под влиянием цитокинов, напри­мер γ-интерферона. Учитывая независимое наследование генов сублокусов, в популяции формируется беско­нечное множество неповторяющиеся комби­наций HLA I класса. Поэтому каждый человек строго уникален по набору антигенов гистосовместимости, исключение составляют только однояйцовые близнецы, которые абсолютно похожи по набору генов. Основная биологи­ческая роль HLA I класса состоит в том, что они определяют биологическую индивидуаль­ность («биологический паспорт») и являются маркерами «своего» для иммунокомпетентных клеток. Содержащая чужеродные (вирусные) или модифицированные пептиды (опухолевая трансформация) молекула МНС I класса имеет нетипичную для данного организма структуру и является сиг­налом для активации Т-киллеров (СD8+ лимфоцитов) и клетки, несущие такие нетипичные комплексы, уничтожаются как чужеродные.

Локус МНС II класса включает сублокусы HLA DR, DQ и DP. МНС II класса экспрессируется на поверхности ограниченного числа клеток: дендритных, В-лимфоцитах, Т-хелперах, активированных макрофагах, тучных, эпителиальных и эндотелиальных клетках. Обнаружение МНС II класса на нетипичных клетках расценивается в настоящее время как иммунопатология. Биосинтез комплекса МНС II класса и пептида протекает в эндоплазматическом ретикулуме, затем встраивается в цитоплазматическую мембрану. Основная биологическая роль молекул МНС II класса состоит в презентации антигенного пептида в комплексе с молекулой МНС II класса Т-хелперам (СD4+ лимфоцитам). Структура МНС II класса с включенным в него пептидом в комплексе с ко-факторными молекулами CD-антигенов вос­принимается и анализируется. В случае принятия ре­шения о чужеродности включенного в МНС II класса пептида Т-хелпер начинает синтез соответствующих цитокинов, и вклю­чается механизм специфического иммунного реагирования. В итоге активируется проли­ферация и окончательная дифференцировка антигенспецифичных клонов лимфоцитов и формирование иммунной памяти.

Помимо описанных выше антигенов гистосовместимости, идентифицирован III класс молекул МНС. Локус, содержащий кодирую­щие их гены располагается между генами I и II клас­сов. К МНС III класса относят­ся некоторые компоненты комплемента (С2, С4), белки теплового шока, факторы некроза опухоли и др.

Антигены бактерий:

— жгутиковые, или Н-антигены, локализуют­ся в локомоторном аппарате бактерий — жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При на­гревании флагеллин денатурирует, и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген;

— соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу со­ставляют липополисахарид (ЛПС). О-антиген проявляет термос­табильные свойства — не разрушается при кипячении. Однако соматичес­кий антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру. Если проиммунизировать животное жи­выми бактериями, имеющими жгутики, то будут вырабатываться антитела, на­правленные одновременно против О- и Н-антигенов. Введение животному про­кипяченной культуры стимулирует био­синтез антител к соматическому антигену. Культура бактерий, обработанная фенолом, вызовет образование антител к жгу­тиковым антигенам;

— капсульные, или К-антигены, располагаются на поверхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из по­липептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность ха­рактерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдержи­вает непродолжительное нагревание (около 1 часа) до 60 °С. Тип L быстро разрушается при этой температуре. Поэтому частичное удале­ние К-антигена возможно путем длительного кипячения бактериальной культуры. На поверхности возбудителя брюшного ти­фа и других энтеробактерий, которые облада­ют высокой вирулентностью, можно обнару­жить особый вариант капсульного антигена. Он получил название антигена вирулентнос­ти, или Vi-антигена.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секретируются бактериями в окружающую среду (на­пример, туберкулин). Столбнячный, дифтерий­ный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэ­тому их используют для получения анатокси­нов для вакцинации людей.

Антигены вирусов:

— ядерные (ко­ровые),

— капсидные (оболочечные),

— суперкапсидные (поверхностные).

Антигенный состав вириона зависит от стро­ения вирусной частицы. Антигенная специфичность простоорганизованных виру­сов связана с рибо- и дезоксирибонуклеопротеинами. Эти вещества хорошо растворяются в воде и поэтому обозначаются как S-антигены (лат. solutio — раствор). У сложноорганизованных вирусов часть антигенов связана с нуклеокапсидом, а другая — локализуется во внешней оболочке (суперкапсиде). Антигены многих вирусов отличаются вы­сокой степенью изменчивости. Это связано с постоянным мутационным процессом, кото­рый претерпевает генетический аппарат вирус­ной частицы. Примером могут служить вирус гриппа, вирусы иммунодефицитов человека.



Источник

Активация системы комплемента при воспалении

Система комплемента — комплекс белков, постоянно присутствующих в крови, которые выполняют ряд важнейших функций. На данный момент комплекс насчитывает более трех десятков белковых молекул, среди которых основные белки — С1, С2, …, С9, а также ряд белков-регуляторов. Комплемент принято относить к факторам врожденного иммунитета, выполняющим защитную функцию, однако при определенных обстоятельствах сбой работы системы комплемента может стать звеном патогенеза некоторых заболеваний. 

Вначале разберем механизмы работы системы комплемента, после чего рассмотрим их клиническое значение.

Читайте также:  Воспаление кишечника симптомы и причины развития заболевания

Активация системы комплемента

Существует три пути активации данной системы: классический, альтернативный и лектиновый. Все они приводят к ключевому событию: формированию С3-конвертазы.

В классическом варианте комплемент активируется через IgG и IgM, которые формируют иммунные комплексы с антигенами. Комплекс С1 (состоящий из q, r и s субъединиц) связывается с Fc-фрагментом иммуноглобулина. Происходит активация C1, комплекс приобретает протеолитическую активность и активирует C4 и C2. Последние формируют ключевой ферментативный комплекс — С3-конвертазу.

При альтернативном пути активация комплемента происходит без участия антител. Инициируют его поверхностные молекулы микробов и их внеклеточные структуры — например, углеводороды, полисахариды и т. д. С3 в клетках постоянно (даже когда нет активации системы комплемента) претерпевает диссоциацию на С3а и С3b, но в очень малых количествах.

Когда в клетке появляется инициирующий фактор (предположим, это бактерия), С3b связывается с ее поверхностными молекулами. К этому комплексу присоединяются другие молекулы-регуляторы: фактор В, фактор D, пропердин. Так появляется еще одна форма С3-конвертазы.

Лектиновый путь активируется через лектин, связывающий маннозу (фактор врожденного иммунитета — MBL) или группу лектинов Ficolin, которые связывают молекулы на поверхности патогенов — дрожжей, бактерий, паразитов и вирусов. MBL и Ficolin постоянно циркулируют в крови в виде MBL-ассоциированного комплекса (MASP). Когда MASP связывается с вышеназванными молекулами, комплекс претерпевает изменения конформации и активирует уже знакомый путь C4 и C2, что приводит к формированию С3-конвертазы, как и в классическом случае.

Итак, вне зависимости от пути активации различия оканчиваются на формировании ключевого фермента — С3-конвертазы. Последняя расщепляет С3 на два фрагмента: С3а и С3b. Отметим, что С3b выполняет функцию опсонина, С3а — анафилотоксин, способный воздействовать на тучные клетки с высвобождением гистамина. 
Однако С3b также способен присоединиться к С3-конвертазе и модифицировать ее, превратив в С5-конвертазу. Этот фермент проделывает то же самое с С5, образуя С5а и С5b. По аналогии, С5а — анафилотоксин, С5b — опсонин. 
И снова С5b присоединяется к С5-конвертазе, вовлекая в каскад С6–С9 с формированием т. н. мембраноатакующего комплекса (MAC) [1].
.

Активация системы комплемента при воспалении

Рисунок 1

Любой из трех путей активации системы комплемента приводит к формированию С3-конвертазы, которая расщепляет С3-компонент на С3а и С3b. Последний участвует в опсонизации патогенов и облегчает таким образом фагоцитоз, а также инициирует каскад формирования МАС. С3а вместе с С5а (и в меньшей степени С4а) — побочные продукты реакций, которые обладают провоспалительным действием («Robbins Basic Pathology», 10nd ed — 2018, p 76).

Таким образом, систему комплемента можно разделить на три функциональные группы: анафилотоксины, опсонины и мембраноатакующий комплекс — МАС.
.

Активация системы комплемента при воспалении

Анафилотоксины

К ним относятся С3а, С4а и С5а. В целом, их роль сводится к провоспалительному действию, что выражается в повышении проницаемости сосудов микроциркуляторного русла (МЦР), вазоконстрикции. В нейтрофилах, эозинофилах и макрофагах анафилотоксины инициируют респираторный взрыв, в базофилах и тучных клетках — высвобождение гистамина. Кроме того, анафилотоксины регулируют синтез эозинофильного катионного белка, адгезию и хемотаксис эозинофилов [2].

В здоровом организме роль анафилотоксинов по большому счету этим и ограничивается. Однако в случае реакций гиперчувствительности данные молекулы могут стать ключевым звеном патогенеза. Одним из наиболее ярких примеров является бронхиальная астма.

Эпителий и гладкомышечные клетки дыхательных путей содержат рецепторы к анафилотоксинам — C3aR и C5aR. При аллергических реакциях происходит активация системы комплемента, который в свою очередь активирует иммунокомпетентные клетки (ИКК), среди которых — нейтрофилы, эозинофилы, макрофаги, дендритные клетки. Последние под влиянием стимула (например, аллергена) способны в свою очередь вновь активировать комплемент — так замыкается порочный круг.

Помимо поддержания системного воспаления, анафилотоксины ответственны и за ремоделирование дыхательных путей. Под их влиянием происходит гиперплазия мерцательного эпителия и гладкомышечных клеток, неоваскуляризация и фиброзирование паренхимы [3,4].

Также анафилотоксины играют важную роль в патогенезе синдрома системного воспалительного ответа (SIRS). При сепсисе, когда микробы в больших количествах попадают в кровоток, происходит системная активация цитокинов, хемокинов и, конечно, системы комплемента. Повышение концентрации анафилотоксинов при сепсисе, к слову, считается неблагоприятным прогностическим фактором [5].

В случае с сепсисом и SIRS анафилотоксины становятся звеном патогенеза. Наибольшая роль в данной ситуации принадлежит С5а. Предположительно, избыточный синтез этого белка приводит к дисфункции нейтрофилов, апоптозу лимфоидных клеток, способствует развитию кардиомиопатий, ДВС-синдрома и полиорганной недостаточности.
В связи с этим постепенно разрабатываются препараты, ингибирующие синтез С5а. На биологических моделях было показано, что блокада данного фактора действительно улучшает прогноз при сепсисе и SIRS [6].

МАС

Данный комплекс может формироваться на поверхности грамотрицательных бактерий и напрямую участвовать в их уничтожении (более всего действие МАС направлено против Neisseria). Описаны также случаи образования МАС на поверхности грамположительных бактерий, паразитов и мембране собственных клеток. Состоит он из последних 5 белков комплемента: С5 — С9.

Специфического рецептора, инициирующего образование комплекса, нет. Белки комплемента адгезируются на наружной поверхности клеточной стенки бактерии, после чего комплекс приобретает ферментативную активность и перфорирует мембрану. Нарушается концентрация ионов и воды — клетка погибает [7].

Недавние исследования показывают, что у МАС имеется и провоспалительное — «сублитическое» — действие. При образовании комплекса на поверхности нейтрофилов или макрофагов происходит локальная утечка провоспалительных медиаторов, а в случае атаки мезангиальных клеток и микроглии — высвобождение цитокинов. Также МАС вызывает образование инфламмасомы путем активации Nod-подобного рецептора [8].

Не допустить образование МАС на собственных клетках помогает рецептор CD59. Генетический дефект CD59 приводит к появлению пароксизмальной ночной гемоглобинурии [7]. А поскольку МАС способен поддерживать системное воспаление, он также вовлекается в патогенез различных воспалительных заболеваний (см. ниже).

Возрастная макулярная дегенерация

Возрастная макулярная дегенерация (ВМД) — основная причина слепоты у пациентов старше 50 лет в цивилизованных странах. В макуле (как и во всей сетчатке) происходят дистрофически-дегенеративные процессы, вследствие чего нарушается способность фокусировать свет в определенной точке, в результате исчезает ясность и четкость зрения. Существует две формы ВМД: влажная (быстро прогрессирующая, экссудативная) и сухая (атрофическая форма). Иногда выделяют рубцовую форму, которая скорее является завершающей стадией заболевания.

Одним из ключевых звеньев этиопатогенеза ВМД является дефект фактора комплемента H — одного из основных регуляторов системы комплемента. Функция его заключается в ингибировании С3-конвертазы (если точнее — является кофактором для протеазы, которая осуществляет катализ С3-конвертазы). Существует несколько форм гена фактора Н, один из наиболее известных — Y402H, который существенно повышает риск развития ВМД. Есть и другие, более редкие варианты [9].

В случае влажной формы ВМД происходит неоваскуляризация сетчатки — аномальное разрастание сосудов под действием VEGF (фактор роста эндотелия сосудов). В опытах было показано, что высвобождение VEGF и неоваскуляризация невозможны без действия MAC [10].

Также в обоих вариантах ВМД важная роль приписывается локальному хроническому воспалению под воздействием системы комплемента. Установлена взаимосвязь между активацией комплемента (особенно по альтернативному пути) и риском развития ВМД [10].

Разумеется, эти данные невозможно было проигнорировать, вследствие чего начали разрабатывать ингибиторы факторов системы комплемента для предотвращения ВМД. На данный момент существуют и моноклональные антитела (анти-фактор D, Экулизумаб), и рекомбинантный фактор Н, и антагонисты различных белков системы комплемента, но пока ни один из них не рекомендован для лечения ВМД [10].

Болезнь Альцгеймера

Воспалительный процесс в нервной ткани сегодня рассматривается как основное патогенетическое звено в развитии БА и других нейродегенеративных заболеваний. Также существуют данные, что прием противовоспалительных препаратов (НПВС) существенно снижает риск развития БА [11].

Читайте также:  От чего воспаление слизистой оболочки гортани

Однако помимо воспалительных цитокинов, важная роль в развитии локального воспаления принадлежит и системе комплемента. В ликворе пациентов с болезнью Альцгеймера обнаруживается повышенная концентрация С3 в сравнении со здоровыми пациентами. Также активность системы комплемента у пациентов с БА существенно выше [12].

Наследственный ангионевротический отек

НАО — редкое и потенциально фатальное заболевание, этиологическим фактором которого является генетический дефект (НАО 1 типа) или дисфункция (НАО 2 типа) ингибитора С1-компонента комплемента (iС1). В норме iС1 — регулятор, который блокирует весь путь активации системы комплемента. При его дефиците происходит гиперактивация начальных компонентов комплемента, следствием чего является повышение проницаемости сосудов, что приводит к различным отекам.

Проявляется НАО в основном в возрасте после 20 лет отеками конечностей, реже — шеи и лица, которые длятся 1–3, максимум — 7 дней, после чего самостоятельно проходят. Сначала пациент может их даже не замечать, однако со временем частота и выраженность отеков нарастают, может происходить отек слизистой ЖКТ, что проявляется болью, тошнотой, иногда — клиникой острого живота. Наиболее опасен отек гортани, который может сопровождаться асфиксией.

Но ситуация с лечением не так уж и плоха. Ингибитор С1 можно вводить внутривенно для профилактики приступов, для купирования — подкожно [13,14].

Пароксизмальная ночная гемоглобинурия

ПНГ — редкое заболевание, в основе которого лежит клональная экспансия гемопоэтических клеток с мутацией PIGA. Результатом данной мутации является недостаточность ГФИ-заякоренных белков, а именно — CD55 и CD59 (гликозилфосфатидилинозитол или ГФИ-якорь — гликопептид, присоединяющийся к белкам в процессе посттрансляционных модификаций). 

Проявляется заболевание гемолитической анемией, костномозговой недостаточностью, тромбофилией. 

В норме CD55 ингибирует С9-компонент и предотвращает формирование МАС, а CD59 — ингибирует образование С3-конвертазы и предотвращает протеолиз С3-компонента.

Патогенез начинается с внутрисосудистого гемолиза, который происходит ввиду дефицита CD55. На поверхности эритроцитов с мутацией формируется С3-конвертаза, которая запускает дальнейший синтез МАС. Образование последнего ничего не сдерживает из-за дефекта CD59. МАС перфорирует мембрану эритроцита, и клетка погибает.

Все клинические проявления — гемоглобинурия, анемия (апластическая), тромбоз/эмболия, гастроинтестинальные и неврологические симптомы, так или иначе, являются следствием данного механизма [15,16].

В качестве лечения используется трансплантация гемопоэтических клеток, гемотрансфузии, симптоматическая и поддерживающая терапия. Также достаточно перспективным является использование ингибиторов системы комплемента, например, Экулизумаба (Солириса), который, по данным некоторых публикаций, устраняет все значимые симптомы заболевания [15]. 

Однако по данным Кохрейна, доказательную базу Экулизумаба нельзя назвать достаточной [17].

Атипичный гемолитико-уремический синдром

Для АГУС характерными симптомами являются гемолитическая анемия, тромбоцитопения и почечная недостаточность с уремией. Этиологией данного заболевания могут быть различные генетические дефекты регуляторов системы комплемента.

Зачастую это мутация CFH, отвечающего за экспрессию уже знакомого читателю фактора Н. Таких мутаций существует более 80, они могут быть наследственными или спорадическими. Также встречаются мутации генов, ответственных за фактор В, С3-компонент комплемента, тромбомодулин и др. [18].

В лечении АГУС также может быть использован экулизумаб [19], однако и здесь ощущается нехватка доказательной базы. В основном же терапия АГУС осуществляется с помощью гемотрансфузий/плазмообмена, диализа, почечной трансплантации — и снова ни одна из названных процедур не способна избавить пациента от болезни [18]. Таким образом, наиболее перспективна разработка ингибиторов системы комплемента и проведение РКИ с их участием.

Помимо перечисленных заболеваний, система комплемента принимает непосредственное участие в патогенезе аутоиммунных кожных заболеваний [20], воспалительных заболеваний почек [21], разнообразных аллергических и аутоиммунных заболеваний. 

Разработка ингибиторов комплемента уже сегодня является перспективным направлением, а некоторые препараты данной группы (экулизумаб) уже могут применяться в ряде случаев.

Источники:

  1. J. V. Sarma and P. A. Ward, ‘The complement system’, Cell Tissue Res., vol. 343, pp. 227–235, 2011.
  2. J. Kohl, ‘Anaphylatoxins and infectious and non-infectious inflammatory diseases’, Mol. Immunol., vol. 38, no. 2–3, pp. 175–187, 2001.
  3. M. A. Khan, A. M. Assiri, and D. C. Broering, ‘Complement mediators: Key regulators of airway tissue remodeling in asthma’, J. Transl. Med., vol. 13, no. 1, pp. 1–9, 2015.
  4. Y. Laumonnier, A. V. Wiese, J. Figge, and C. Karsten, ‘Regulation and function of anaphylatoxins and their receptors in allergic asthma’, Mol. Immunol., vol. 84, pp. 51–56, 2017.
  5. C. E. Hack et al., ‘Elevated plasma levels of the anaphylatoxins C3a and C4a are associated with a fatal outcome in sepsis’, Am. J. Med., vol. 86, no. 1 C, pp. 20–26, 1989.
  6. R. S. Hotchkiss, L. L. Moldawer, S. M. Opal, K. Reinhart, I. R. Turnbull, and J.-L. Vincent, ‘Sepsis and septic shock’, Nat. Rev. Dis. Prim., vol. 2, no. 16045, pp. 1–47, 2017.
  7. C. Bayly-Jones, D. Bubeck, and M. A. Dunstone, ‘The mystery behind membrane insertion: A review of the complement membrane attack complex’, Philos. Trans. R. Soc. B Biol. Sci., vol. 372, no. 1726, 2017.
  8. B. P. Morgan, ‘The membrane attack complex as an inflammatory trigger’, Immunobiology, vol. 221, no. 6, pp. 747–751, 2016.
  9. E. C. Schramm, S. J. Clark, M. P. Triebwasser, S. Raychaudhuri, J. M. Seddon, and J. P. Atkinson, ‘Genetic variants in the complement system predisposing to age-related macular degeneration: A review’, Mol. Immunol., vol. 61, no. 2, pp. 118–125, 2014.
  10. R. Troutbeck, S. Al-Qureshi, and R. H. Guymer, ‘Therapeutic targeting of the complement system in age-related macular degeneration: A review’, Clin. Exp. Ophthalmol., vol. 40, no. 1, pp. 18–26, 2012.
  11. P. L. McGeer, J. Rogers, and E. G. McGeer, ‘Inflammation, antiinflammatory agents, and Alzheimer’s disease: The last 22 years’, Handb. Infect. Alzheimer’s Dis., vol. 54, pp. 11–15, 2017.
  12. H. Krance, C. W. Yi, and Z. Huiyan, ‘The complement cascade in Alzheimer ’ s disease : a systematic review and meta-analysis’, Mol. Psychiatry, 2019.
  13. K. Bork et al., ‘Guideline: Hereditary angioedema due to C1 inhibitor deficiency: S1 Guideline of the German Society for Angioedema (Deutsche Gesellschaft für Angioödeme, DGA), German Society for Internal Medicine (Deutsche Gesellschaft für Innere Medizin, DGIM), German S’, Allergo J. Int., vol. 28, no. 1, pp. 16–29, 2019.
  14. H. Longhurst et al., ‘Prevention of hereditary angioedema attacks with a subcutaneous C1 inhibitor’, N. Engl. J. Med., vol. 376, no. 12, pp. 1131–1140, 2017.
  15. A. Kumar, ‘Paroxysmal Nocturnal Hemoglobinuria’, Blood, vol. 124, no. 18, pp. 1462–1470, 2014.
  16. C. Parker et al., ‘Diagnosis and management of paroxysmal nocturnal hemoglobinuria’, Rev. Transl. Hematol., vol. 106, no. 12, pp. 3699–3709, 2005.
  17. A. J. Martí-Carvajal, V. Anand, A. F. Cardona, and I. Solà, ‘Eculizumab for treating patients with paroxysmal nocturnal hemoglobinuria’, Cochrane Database Syst. Rev., vol. 2013, no. 2, 2013.
  18. M. Progress, ‘Atypical Hemolytic–Uremic Syndrome’, N. Engl. J. Med., 2010.
  19. C. M. Legendre et al., ‘Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome’, N. Engl. J. Med., vol. 368, no. 23, pp. 2169–2181, 2013.
  20. G. Edwards, G. F. H. Diercks, M. A. J. Seelen, B. Horvath, M. B. A. Van Doorn, and J. Damman, ‘Complement activation in autoimmune bullous dermatoses: A comprehensive review’, Front. Immunol., vol. 10, no. JUN, pp. 1–8, 2019.
  21. K. Koåcielska-Kasprzak, D. Bartoszek, M. Myszka, M. Åabińska, and M. Klinger, ‘The complement cascade and renal disease’, Arch. Immunol. Ther. Exp. (Warsz)., vol. 62, no. 1, pp. 47–57, 2014.

Источник